首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple neurodegenerative disorders are linked to aberrant phosphorylation of microtubule-associated proteins (MAPs). Protein phosphatase 2A (PP2A) is the major MAP phosphatase; however, little is known about its regulation at microtubules. α4 binds the PP2A catalytic subunit (PP2Ac) and the microtubule-associated E3 ubiquitin ligase MID1, and through unknown mechanisms can both reduce and enhance PP2Ac stability. We show MID1-dependent monoubiquitination of α4 triggers calpain-mediated cleavage and switches α4's activity from protective to destructive, resulting in increased Tau phosphorylation. This regulatory mechanism appears important in MAP-dependent pathologies as levels of cleaved α4 are decreased in Opitz syndrome and increased in Alzheimer disease, disorders characterized by MAP hypophosphorylation and hyperphosphorylation, respectively. These findings indicate that regulated inter-domain cleavage controls the dual functions of α4, and dysregulation of α4 cleavage may contribute to Opitz syndrome and Alzheimer disease.  相似文献   

2.
Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme consisting of a scaffold subunit (A), a catalytic subunit (C), and a variable regulatory subunit (B). The regulatory B subunits determine the substrate specificity and subcellular localization of the PP2A holoenzyme. Here, we demonstrate that the subcellular localization of the B56γ3 regulatory subunit is regulated in a cell cycle-specific manner. Notably, B56γ3 becomes enriched in the nucleus at the G1/S border and in S phase. The S phase-specific nuclear enrichment of B56γ3 is accompanied by increases of nuclear A and C subunits and nuclear PP2A activity. Overexpression of B56γ3 promotes nuclear localization of the A and C subunits, whereas silencing both B56γ2 and B56γ3 blocks the S phase-specific increase in the nuclear localization and activity of PP2A. In NIH3T3 cells, B56γ3 overexpression reduces p27 phosphorylation at Thr-187, concomitantly elevates p27 protein levels, delays the G1 to S transition, and retards cell proliferation. Consistently, knockdown of endogenous B56γ3 expression reduces p27 protein levels and increases cell proliferation in HeLa cells. These findings demonstrate that the dynamic nuclear distribution of the B56γ3 regulatory subunit controls nuclear PP2A activity, which regulates cell cycle controllers, such as p27, to restrain cell cycle progression, and may be responsible for the tumor suppressor function of PP2A.  相似文献   

3.
《Cellular signalling》2014,26(12):2730-2737
TRAFs constitute a family of proteins that have been implicated in signal transduction by immunomodulatory cellular receptors and viral proteins. TRAF2 and TRAF6 have an E3-ubiquitin ligase activity, which is dependent on the integrity of their RING finger domain and it has been associated with their ability to activate the NF-κB and AP1 signaling pathways. A yeast two-hybrid screen with TRAF2 as bait, identified the regulatory subunit PP4R1 of protein phosphatase PP4 as a TRAF2-interacting protein. The interaction of TRAF2 with PP4R1 depended on the integrity of the RING finger domain of TRAF2. PP4R1 could interact also with the TRAF2-related factor TRAF6 in a RING domain-dependent manner. Exogenous expression of PP4R1 inhibited NF-κB activation by TRAF2, TRAF6, TNF and the Epstein–Barr virus oncoprotein LMP1. In addition, expression of PP4R1 downregulated IL8 induction by LMP1, whereas downregulation of PP4R1 by RNA interference enhanced the induction of IL8 by LMP1 and TNF. PP4R1 could mediate the dephosphorylation of TRAF2 Ser11, which has been previously implicated in TRAF2-mediated activation of NF-κB. Finally, PP4R1 could inhibit TRAF6 polyubiquitination, suggesting an interference with the E3 ubiquitin ligase activity of TRAF6. Taken together, our data identify a novel mechanism of NF-κB pathway inhibition which is mediated by PP4R1-dependent targeting of specific TRAF molecules.  相似文献   

4.
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a serine/threonine kinase that is important in synaptic plasticity and T cell maturation. Activation of CaMKIV requires calcium/calmodulin binding and phosphorylation at T200 by CaMK kinase. Our previous work has shown that protein serine/threonine phosphatase 2A (PP2A) forms a complex with CaMKIV and negatively regulates its activity. Here we demonstrate that PP2A tightly regulates T200 phosphorylation of endogenous CaMKIV, but has little effect on the phosphorylation of the ectopically-expressed kinase. This differential regulation of endogenous versus exogenous CaMKIV is due to differences in their ability to associate with PP2A, as exogenous CaMKIV associates poorly with PP2A in comparison to endogenous CaMKIV. The inability of exogenous CaMKIV to associate with PP2A appears to be due to limiting amounts of endogenous PP2A regulatory B subunits, since coexpression of Bα or Bδ causes the recruitment of PP2Ac to ectopic CaMKIV, leading to formation of a CaMKIV·PP2A complex. Together, these data indicate that the B subunits are essential for the interaction of PP2A with CaMKIV.  相似文献   

5.
Li H  Liu C  Zhang H  Wei Q 《Biochimica et biophysica acta》2011,1814(12):1769-1774
Protein phosphatase 2A (PP2A) is one of the most important Ser/Thr phosphatases in eukaryotic cells. The enzymatic core of PP2A (PP2A(D)) consists of a scaffold subunit (A subunit) and a catalytic subunit (C subunit). When residue Cys269 in the β12-β13 loop of the PP2A C subunit was deleted (ΔC269), the activity and the intrinsic fluorescence intensity of PP2A(D) decreased. Specify the effects of some metal ions on PP2A(D) were also changed. Mn(2+) in particular was an efficient activator of ΔC269 and altered the intrinsic fluorescence spectrum of ΔC269. Remarkably, after pre-treatment of ΔC269 with Mn(2+), the effects of other metal ions showed the same trends as they had on the WT. Molecular dynamics (MD) simulations showed that deletion of Cys269 decreased the polarity of the β12-β13 loop of PP2A Cα. We conclude that deletion of residue Cys269 alters the conformation and activity of PP2A(D) and influences the interaction between PP2A and various metal ions, notably Mn(2+).  相似文献   

6.
Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapa- mycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephos- phorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regu- lation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors, Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphoryl- ation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.  相似文献   

7.
Protein phosphatase 2A (PP2A) is a major protein phosphatase with important cell functions. Known and utilized as a potent inhibitor of PP2A, microcystin-LR (MCLR) targets PP2A as a core element that affects numerous cellular mechanisms. But apart from direct inhibition, the exact effect of MCLR on PP2A in cell is largely unknown, specifically with regard to cellular response and autoregulation. Here, we show that a low concentration of MCLR stimulates, rather than inhibits, PP2A activity in HEK293 cells. Immunoprecipitation and immunofluorescence assays reveal that the catalytic subunit and a regulatory subunit of PP2A, termed α4, dissociate from inactive complex upon MCLR exposure, suggesting that the released catalytic subunit regains activity and thereby compensates the activity loss. At high concentrations of MCLR, PP2A activity decreases along with dissociation of the core enzyme and altered post-translational modification of its catalytic subunit. In addition, the dissociation of α4 and PP2A may contribute to destabilization of HEK293 cells cytoskeleton architecture, detachment to extracellular matrix and further anoikis. Our data provide a novel PP2A upregulation mechanism and challenge the recognition of MCLR only as a PP2A inhibitor in cells.  相似文献   

8.
In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery.  相似文献   

9.
In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery.  相似文献   

10.
A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling.Wnt/β-catenin signaling plays essential roles in development and tumorigenesis (13). Our previous work found that β-catenin is sequentially phosphorylated by CKIα4 and GSK3 (4), which creates a binding site for β-Trcp (5), leading to degradation via the ubiquitination/proteasome machinery (3). Mutations in β-catenin or APC genes that prevent β-catenin phosphorylation or ubiquitination/degradation lead ultimately to cancer (1, 2).In addition to the involvement of kinases, protein phosphatases, such as PP1, PP2A, and PP2C, are also implicated in Wnt/β-catenin regulation. PP2C and PP1 may regulate dephosphorylation of Axin and play positive roles in Wnt signaling (6, 7). PP2A is a multisubunit enzyme (810); it has been reported to play either positive or negative roles in Wnt signaling likely by targeting different components (1121). Toward the goal of understanding the mechanism of β-catenin phosphorylation, we carried out siRNA screening targeting several major phosphatases, in which we found that PP2A dephosphorylates β-catenin. This is consistent with a recent study where PP2A is shown to dephosphorylate β-catenin in a cell-free system (18).PP2A consists of a catalytic subunit (PP2Ac), a structure subunit (PR65/A), and variable regulatory B subunits (PR/B, PR/B′, PR/B″, or PR/B‴). The substrate specificity of PP2A is thought to be determined by its B subunit (9). By siRNA screening, we further identified that PR55α, a regulatory subunit of PP2A, specifically regulates β-catenin phosphorylation and degradation. Mechanistically, we found that PR55α directly interacts with β-catenin and regulates PP2A-mediated β-catenin dephosphorylation in Wnt signaling.  相似文献   

11.
Microcystins are highly toxic cyanotoxins responsible for plant, animal and human poisoning. Exposure to microcystins, mainly through drinkable water and contaminated food, is a current world health concern. Although it is quite challenging, the synthesis of these potent cyanotoxins, analogs and derivatives helps to evaluate their toxicological properties and to elucidate their binding mechanisms to their main targets Protein Phosphatase-1 (PP1) and -2A (PP2A). This review focuses on synthetic approaches to prepare microcystins and analogs and compiles structure–activity relationship (SAR) studies that describe the unique features of microcystins that make them so potent.  相似文献   

12.
13.
14.
Resveratrol, a natural polyphenol compound, has been shown to possess anticancer activity. However, how resveratrol inhibits cancer cell adhesion has not been fully elucidated. Here, we show that resveratrol suppressed the basal or type I insulin-like growth factor (IGF)-1-stimulated adhesion of cancer cells (Rh1, Rh30, HT29, and HeLa cells) by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway. Inhibition of Erk1/2 with U0126, knockdown of Erk1/2, or overexpression of dominant-negative mitogen-activated protein kinase kinase 1 (MKK1) strengthened resveratrol’s inhibition of the basal or IGF-1-stimulated of Erk1/2 phosphorylation and cell adhesion, whereas ectopic expression of constitutively active MKK1 attenuated the inhibitory effects of resveratrol. Further research revealed that both protein phosphatase 2A (PP2A) and phosphatase and tensin homolog (PTEN)–Akt were implicated in resveratrol-inactivated Erk1/2-dependent cell adhesion. Inhibition of PP2A with okadaic acid or overexpression of dominant-negative PP2A rendered resistance to resveratrol’s suppression of the basal or IGF-1-stimulated phospho-Erk1/2 and cell adhesion, whereas expression of wild-type PP2A enhanced resveratrol’s inhibitory effects. Overexpression of wild-type PTEN or dominant-negative Akt or inhibition of Akt with Akt inhibitor X strengthened resveratrol’s inhibition of the basal or IGF-1-stimulated Erk1/2 phosphorylation and cell adhesion. Furthermore, inhibition of mechanistic/mammalian target of rapamycin (mTOR) with rapamycin or silencing mTOR enhanced resveratrol’s inhibitory effects on the basal and IGF-1-induced inhibition of PP2A–PTEN, activation of Akt–Erk1/2, and cell adhesion. The results indicate that resveratrol inhibits Erk1/2-mediated adhesion of cancer cells via activating PP2A–PTEN signaling network. Our data highlight that resveratrol has a great potential in the prevention of cancer cell adhesion.  相似文献   

15.
Novel inhibitors of TGF-β1 and activin A signalling based on a 2-aryl-4-(3-(pyridin-2-yl)-1H-pyrazol-4-yl)pyridine pharmacophore have been synthesised. Compounds containing phenyl or aromatic nitrogen heterocycle substituents inhibited both types of signalling with HEK-293T cells in culture, with a selectivity preference for TGF-β1. Synthetic compounds containing pyridin-3-yl, pyrazol-4-yl, pyrazol-1-yl or 1H-imidazoyl-1-yl substituents exhibited structural and functional attributes suitable for further investigation related to the development of more potent TGF-β inhibitors.  相似文献   

16.
Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15–29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.  相似文献   

17.
PP2A的结构和功能新进展   总被引:1,自引:0,他引:1  
PP2A是一种丝/苏氨酸磷蛋白磷酸酶,通过可逆性磷酸化使已磷酸化激活的蛋白质脱磷酸,在信号传导中承担负性调节的作用。由一个催化亚基和两个调节亚基构成。:PP2A是一种多功能性酶,底物为众多体内的转录因子和蛋白激酶;酵母,果蝇和小鼠的动物模型的研究中已经发现PP2A在细胞周期调控,形态以及发育中的作用;同时它又在信号转导的级联反应中与其他磷酸化酶和激酶相互作用,构成调节大分子调控下游信号的转导。催化亚基活性主要由转录后水平磷酸化和甲基化的状态调控。  相似文献   

18.
Dephosphorylation of important myocardial proteins is regulated by protein phosphatase 2A (PP2A), representing a heterotrimer that is comprised of catalytic, scaffolding, and regulatory (B) subunits. There is a multitude of B subunit family members directing the PP2A holoenzyme to different myocellular compartments. To gain a better understanding of how these B subunits contribute to the regulation of cardiac performance, we generated transgenic (TG) mice with cardiomyocyte-directed overexpression of B56α, a phosphoprotein of the PP2A-B56 family. The 2-fold overexpression of B56α was associated with an enhanced PP2A activity that was localized mainly in the cytoplasm and myofilament fraction. Contractility was enhanced both at the whole heart level and in isolated cardiomyocytes of TG compared with WT mice. However, peak amplitude of [Ca]i did not differ between TG and WT cardiomyocytes. The basal phosphorylation of cardiac troponin inhibitor (cTnI) and the myosin-binding protein C was reduced by 26 and 35%, respectively, in TG compared with WT hearts. The stimulation of β-adrenergic receptors by isoproterenol (ISO) resulted in an impaired contractile response of TG hearts. At a depolarizing potential of −5 mV, the ICa,L current density was decreased by 28% after administration of ISO in TG cardiomyocytes. In addition, the ISO-stimulated phosphorylation of phospholamban at Ser16 was reduced by 27% in TG hearts. Thus, the increased PP2A-B56α activity in TG hearts is localized to specific subcellular sites leading to the dephosphorylation of important contractile proteins. This may result in higher myofilament Ca2+ sensitivity and increased basal contractility in TG hearts. These effects were reversed by β-adrenergic stimulation.  相似文献   

19.
目的:构建重组PP2R1A基因的逆转录病毒感染HEKTER细胞,观察其定位,验证表达,研究过表达PP2R1A对细胞生长及周期的影响。方法:逆转录病毒载体pMIG-Flag-PP2R1A-IRES-GFP与Pcl10A1瞬时共转染293T细胞,收集病毒感染HEKTER细胞,在荧光显微镜下观察定位,标记荧光单克隆。挑取不同表达强度单克隆做western验证PP2R1A蛋白表达。运用流式细胞分析、体外创伤试验及生长曲线试验研究单克隆细胞的增殖及周期。结果:获得了过表达PP2R1A的单克隆细胞株,PP2R1A在细胞内广泛表达,结合western及细胞试验证实PP2R1A高表达阻滞细胞周期并减慢细胞生长。结论:PP2R1A是丝苏氨酸蛋白磷酸酶PP2A的结构A亚基的a亚型,在细胞内广泛表达。本文成功构建了表达PP2R1A的细胞株,研究发现PP2R1A高表达会影响细胞生长及细胞周期,减缓了细胞增殖。为进一步深入研究PP2R1A对PP2A全酶活性及功能、细胞转化的影响奠定了重要的实验基础。  相似文献   

20.
付鹤玲  李靓云  李蕾  李建民 《生物磁学》2011,(10):1869-1872
目的:构建重组PP2R1A基因的逆转录病毒感染HEKTER细胞,观察其定位,验证表达,研究过表达PP2R1A对细胞生长及周期的影响。方法:逆转录病毒载体pMIG-Flag-PP2R1A-IRES-GFP与Pcll0A1瞬时共转染293T细胞,收集病毒感染HEKTER细胞,在荧光显微镜下观察定位,标记荧光单克隆。挑取不同表达强度单克隆做western验证PP2R1A蛋白表达。运用流式细胞分析、体外创伤试验及生长曲线试验研究单克隆细胞的增殖及周期。结果:获得了过表达PP2R1A的单克隆细胞株,PP2R1A在细胞内广泛表达,结合western及细胞试验证实PP2R1A高表达阻滞细胞周期并减慢细胞生长。结论:PP2R1A是丝苏氨酸蛋白磷酸酶PP2A的结构A亚基的a亚型,在细胞内广泛表达。本文成功构建了表达PP2R1A的细胞株,研究发现PP2R1A高表达会影响细胞生长及细胞周期,减缓了细胞增殖。为进一步深入研究PP2R1A对PP2A全酶活性及功能、细胞转化的影响奠定了重要的实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号