首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase 1 gene have been predicted to result in p.293A (alanine at amino acid 293) and p.293V (valine at amino acid 293) alleles at the stearoyl-CoA desaturase1 locus. The objectives of this study were to evaluate the extent to which genotypes at the stearoyl-CoA desaturase 1 locus and stage of lactation influence milk fatty acid composition in Canadian Holstein cows. Cows with the p.293AA genotype had higher C10 index, C12 index and C14 index and higher concentrations of C10:1 (10 carbon fatty acid with one double bond), C12:1 (12 carbon fatty acid with one double bond) and myristoleic acid (C14:1) compared with the p.293AV or p.293VV cows. Cows had higher C18 index and total index, and lower C10 index, C12 index, C14 index and CLA index during early lactation compared with the subsequent lactation stages. Early lactation was also characterized by higher concentrations of oleic acid (C18:1 cis -9), vaccenic acid (C18:1 trans -11), linoleic acid (C18:2), monounsaturated fatty acids and total polyunsaturated fatty acids, and lower concentrations of capric acid (C10:0), C10:1, lauric acid (C12:0), C12:1, myristic acid (C14:0), myristoleic acid (C14:1), palmitic acid (C16:0) and total saturated fatty acids compared with the subsequent lactation stages. Neither the stearoyl-CoA desaturase 1 genotype nor the stage of lactation had an influence on conjugated linoleic acid concentrations in milk.  相似文献   

2.
3.
Using primary cultures of adult rat hepatocytes, the regulation of the following lipogenic enzymes was studied: glucose-6-phosphate dehydrogenase, malic enzyme, ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase, and stearoyl-CoA desaturase. The addition to the culture medium of either insulin or triiodothyronine produced a 2-3-fold increase in each of the individual enzyme activities whereas glucagon slightly decreased enzyme activities. The addition to the medium of 8-bromoguanosine 3,'5'-monophosphate had no effect on any of the enzyme activities unless glucose was also added to the culture medium. Glucose addition alone to the culture medium was without any effect; however, glucose enhanced the stimulation of enzyme activity due to insulin. The addition of fructose or glycerol, even in the absence of insulin, increased the activities of each of the enzymes studied 2-3-fold. The increases in enzyme activity brought about by insulin or fructose were apparently the result of de novo enzyme synthesis, as indicated by the observation that the increases were not noted in the presence of cordycepin or cycloheximide. Immunoprecipitation of ATP-citrate lyase from hepatocytes pulse-labeled with [3H]leucine indicated that the induction of this enzyme in response to the addition of fructose or glycerol to the culture medium was the result of an increase in the rate of synthesis of the enzyme. These results indicate that the activity and synthesis of individual enzymes involved in lipogenesis are increased in response to the metabolism of carbohydrate independently in part from hormonal effects.  相似文献   

4.
Saturated and monounsaturated fatty acids are the most abundant fatty acid species in mammalian organisms, and their distribution is regulated by stearoyl-CoA desaturase, the enzyme that converts saturated into monounsaturated fatty acids. A positive correlation between high monounsaturated fatty acid levels and neoplastic transformation has been reported, but little is still known about the regulation of stearoyl-CoA desaturase in cell proliferation and apoptosis, as well as in cancer development. Here we report that simian virus 40-transformed human lung fibroblasts bearing a knockdown of human stearoyl-CoA desaturase by stable antisense cDNA transfection (hSCDas cells) showed a considerable reduction in monounsaturated fatty acids, cholesterol, and phospholipid synthesis, compared with empty vector transfected-simian virus 40 cell line (control cells). hSCDas cells also exhibited high cellular levels of saturated free fatty acids and triacylglycerol. Interestingly, stearoyl-CoA desaturase-depleted cells exhibited a dramatic decrease in proliferation rate and abolition of anchorage-independent growth. Prolonged exposure to exogenous oleic acid did not reverse either the slower proliferation or loss of anchorage-independent growth of hSCDas cells, suggesting that endogenous synthesis of monounsaturated fatty acids is essential for rapid cell replication and invasiveness, two hallmarks of neoplastic transformation. Moreover, apoptosis was increased in hSCDas cells in a ceramide-independent manner. Finally, stearoyl-CoA desaturase-deficient cells were more sensitive to palmitic acid-induced apoptosis compared with control cells. Our data suggest that, by globally regulating lipid metabolism, stearoyl-CoA desaturase activity modulates cell proliferation and survival and emphasize the important role of endogenously synthesized monounsaturated fatty acids in sustaining the neoplastic phenotype of transformed cells.  相似文献   

5.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

6.
Cultured C-6 glial cells were utilized to evaluate the effect of antimicrotubular drugs on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and cholesterol synthesis. Colchicine, Colcemid, and vinblastine (1.0 muM) caused a marked reduction in HMG-CoA reductase activity and, as a consequence, the rate of cholesterol synthesis in these cells. No effect was observed with lumicolchicine, a mixture of colchicine isomers with no effect on microtubules. The effect of colchicine was apparent within 1 h after addition to the culture medium, and, after 6 h, HMG-CoA reductase activity in treated cells was only approximately 15 to 30% of that in untreated cells. Reductase activity was very sensitive to the concentration of drug added, i.e. cells treated with just 0.1 muM colchicine for 6 h exhibited a 50% lower enzymatic activity than did untreated cells. The lack of a generalized, nonspecific toxic effect on the cells was indicated by the finding of no change in the activities of fatty acid synthetase and NADPH-cytochrome c reductase and the rate of total protein synthesis in cells treated with colchicine (1 muM) for 6 h. A close temporal and quantitative correlation was observed between the effects of colchicine on HMG-CoA reductase and on a parameter of microtubular function, i.e. maintenance of glial cell shape. The data suggest that microtubules are involved in the regulation of HMG-CoA reductase and cholesterol synthesis in C-6 glial cells.  相似文献   

7.
Recent insights into stearoyl-CoA desaturase-1   总被引:7,自引:0,他引:7  
PURPOSE OF REVIEW: Stearoyl-Coenzyme A (CoA) desaturase is a central lipogenic enzyme catalyzing the synthesis of monounsaturated fatty acids - mainly oleate (C(18:1)). Oleate is the most abundant monounsaturated fatty acid in dietary fat and is therefore readily available. Why, then, is stearoyl-CoA desaturase a highly regulated enzyme? This review summarizes the recent and timely advances concerning the important role of stearoyl-CoA desaturase in metabolism. RECENT FINDINGS: Recent findings using mice that have a naturally occurring mutation in the SCD1 gene isoform as well as a mouse model with a targeted disruption of the stearoyl-CoA desaturase gene-1 (SCD1-/-) have revealed the role of de-novo synthesized oleate and thus the physiological importance of SCD1 expression. In the highlighted references, it is shown that the SCD1-/- mice have reduced body adiposity, increased insulin sensitivity, and are resistant to diet-induced obesity. The expression of several genes of lipid oxidation is upregulated, whereas lipid synthesis genes are downregulated. SCD1 was also found to be a component of the novel metabolic response to the hormone leptin. SUMMARY: SCD1, therefore, appears to be an important metabolic control point, and inhibition of its expression could be of benefit for the treatment of obesity, diabetes and other metabolic diseases.  相似文献   

8.
The effect of clofibrate and ethanol in the rat was studied on the following aspects of lipid composition and metabolism: liver delta 5, delta 6 and delta 9 fatty acid desaturases, fatty acid synthetase and fatty acid desaturase microsomal electron transport chain activity and serum cholesterol, triacylglycerols and high (HDL), low (LDL) and very low density lipoprotein (VLDL) levels. Clofibrate administered for 9 days (0.3% W/W) did not modify the relative composition of liver phospholipids and cholesterol, but did diminish triacylglycerol levels increased by ethanol. This effect could be explained by the possible beta-adrenergic blocking properties of clofibrate or by an increased activity of peroxisomal beta-oxidation. Clofibrate also promoted a decrease in serum cholesterol and triacylglycerol levels, delta 6 desaturase activity and a suppression of the electron transport chain as measured by NADH cytochrome b5 reductase and NADH cytochrome c reductase. The drug increased delta 9 desaturase activity and fatty acid synthetase, while no effect could be found in delta 5 desaturase activity. The hypocholesterolenic effect of clofibrate can not be explained through the delta 6 desaturase inhibition, or the fatty acid synthetase enhancement. Ethanol increased the HDL and VLDL and lowered LDL serum concentrations, while clofibrate reversed these results. Considering that clofibrate could have antiatherosclerotic effect in the rat, it is difficult to explain it through these changes in lipoprotein levels, since according to Miller and Miller low HDL levels are predictive of coronary heart disease.  相似文献   

9.
In previous studies we have shown that 125I-labeled prolactin is taken up by a receptor-dependent process and concentrated in an intact form in Golgi elements from female rat liver (J. Biol. Chem., 1979, 254:209- 214). In this study we have examined the effect of colchicine on this uptake process into Golgi elements. Colchicine [25 mumol (10 mg)/100 gm body wt] was injected intraperitoneally in adult female rats, and hepatic Golgi fractions were prepared at 1, 2, and 3 h postinjection. The enzyme recoveries and morphological appearance of fractions from colchicine-treated and control (alcohol alone) animals were similar. At times greater than 1 h after colchicine there was a marked (greater than 60%) inhibition of uptake of 125I-ovine prolactin (125I-oPRL) into Golgi light and intermediate fractions but no inhibition of uptake into Golgi heavy and plasmalemma elements. At times from 2 to 45 min postinjection, 125I-oPRL was extracted from Golgi elements and found to be largely intact as judged by rebinding to receptors. The inhibitory effect of colchicine was seen at doses ranging from 0.25 mumol to 25 mumol/100 g body wt. Vincristine also inhibited 125I-oPRL uptake into the Golgi light and intermediate fractions but lumicolchicine had no inhibitory effect. There was a smaller effect of colchicine both at early (1 h) and later (3 h) times on the extent and pattern of 125I- insulin uptake. Colchicine treatment did not produce a significant change in lactogen receptor levels in the Golgi fractions. These results demonstrate that colchicine treatment inhibited the transfer of prolactin into Golgi vesicular elements. The much smaller effect on insulin uptake suggests that there may be differences in the manner in which the two hormones are handled in the course of internalization.  相似文献   

10.

Background

Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood.

Principal Findings

In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells.

Conclusion

These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.  相似文献   

11.
Crude cytosolic fraction from rat liver was examined for proteins that may be involved in regulation of microsomal stearoyl-CoA desaturase activity. Gel filtration revealed the presence of several components that either stimulate or inhibit this enzyme. In addition, other components bind the acyl-CoA substrate, thus affecting observed activities in vitro. A protein that stimulates stearoyl-CoA desaturase but does not bind substrate was purified approx. 1100-fold. The purified protein had no visible absorption spectrum and an approximate mol.wt. of 26500. Maximal stimulation of desaturase activity occurred with less than 2 micrometer purified protein. The protein was heat-labile and exhibited neither catalase nor glutathione peroxidase activity. Addition of the cytosolic protein produced no effect on the desaturase reaction stoicheiometry; the proportions O2 consumed/NADH oxidized/stearoyl-CoA desaturated remained 1:1:1. Because the Km' for stearoyl-CoA was also unchanged by addition of the cytosolic protein, no change in substrate affinity was suggested. Furthermore addition of the cytosolic protein also produced no effect on desaturase inhibition by oleoyl-CoA, which suggested that the protein does not simply relieve apparent product inhibition. These results indicate that, in analogy to other cytosolic proteins that stimulate microsomal oxidase activities, the protein may have a regulatory function, perhaps related to activity modulation via organization of the multienzymic desaturase in the membrane.  相似文献   

12.
The sources of octadecenoic acid (18:1) and the importance of the stearoyl-CoA desaturase system in maintaining elevated levels of this fatty acid in the Morris hepatoma 7288C have been investigated. Sterculic acid, an inhibitor of the stearoyl-CoA desaturase system, when added to the culture medium, inhibited the production of monoenoic fatty acids through de novo synthesis by 90% while the production of saturated fatty acids and cholesterol was unaffected. Sterculic acid also inhibited 18:1 formation through desaturation of exogenous stearate (18:0) by 80%. These results indicate that the stearoyl-CoA desaturase system is responsible for most, if not all, of the 18:1 produced within these cells and that an alternate, sterculic acid-insensitive, pathway for 18:1 biosynthesis is not functioning in this cell line. Measurements of fatty acid synthesis, using 3H2O, show that de novo synthesis accounts for approx. 30% of the cellular 16:1 and 18:1 mass, while contributing 63% and 95% of the stearate and palmitate mass, respectively. Cells grown in the presence of sterculic acid displayed a 50% decrease in 18:1 levels while levels of both palmitate and stearate increased. These effects were maximal at 20-30 microM sterculate. Polyunsaturate levels were unaffected. The 50% decrease in 18:1 levels in treated cells could be completely accounted for by the inhibition of de novo 18:1 biosynthesis and the inhibition of exogenous 18:0 desaturation. This enzyme system, although low in activity when measured in this tissue, is responsible for a major portion of the 18:1 observed in these cells.  相似文献   

13.
1. Hepatocytes were isolated by perfusion of the liver with collagenase/salt solutions and incubated in culture after attachment to plastic culture dishes for periods up to 48 h. 2. The cells, when incubated in serum-free culture medium in the presence of insulin, showed enhanced stearolyl-CoA desaturase activity which was not observed when 50 muM cycloheximide was included. When insulin was omitted from the medium, the cells lost 80% of their original desaturase activity. 3. Cells isolated from animals fed 20% (w/w) sucrose for two weeks prior to sacrifice, showed high levels of fatty acid synthesis, stearolyl-CoA desaturase activity and triacylglycerol synthesis when compared with cells isolated from animals fed a corn oil supplemental diet. 4. The observations are discussed in terms of the influence of stearoyl-CoA desaturase activity on hepatic lipogenesis.  相似文献   

14.
Four positional isomers of Thiastearate (TS) and Isoxyl (Thiocarlide) were assayed as fatty acid desaturase inhibitors in Trypanosoma cruzi epimastigotes. 9-TS did not exert a significant effect on growth of T. cruzi, nor on the fatty acid profile of the parasite cells. One hundred micromolars of 10-TS totally inhibited growth, with an effective concentration for 50% growth inhibition (EC50) of 3.0 ± 0.2 μM. Growth inhibition was reverted by supplementing the culture media with oleate. The fatty acid profile of treated cells revealed that conversion of stearate to oleate and palmitate to palmitoleate were drastically reduced and, as a consequence, the total level of unsaturated fatty acids decreased from 60% to 32%. Isoxyl, a known inhibitor of stearoyl-CoA Δ9 desaturase in mycobacteria, had similar effects on T. cruzi growth (EC50 2.0 ± 0.3 μM) and fatty acid content, indicating that Δ9 desaturase was the target of both drugs. 12- and 13-TS were inhibitors of growth with EC50 values of 50 ± 2 and 10 ± 3 μM, respectively, but oleate or linoleate were unable to revert the effect. Both drugs increased the percentage of oleate and palmitate in the cell membrane and drastically reduced the content of linoleate from 38% to 16% and 12%, respectively, which is in agreement with a specific inhibition of oleate Δ12 desaturase. The absence of corresponding enzyme activity in mammalian cells and the significant structural differences between trypanosome and mammalian Δ9 desaturases, together with our results, highlight these enzymes as promising targets for selective chemotherapeutic intervention.  相似文献   

15.
1. Explants of mammary gland from mid-pregnant rabbits were cultured with insulin, prolactin and cortisol. 2. Antibodies raised to fatty acid synthetase were used to measure the amount as well as the rate of synthesis and the rate of degradation of the enzyme in the explants over defined periods in organ culture. These measurements were also made after the hormones had been removed from the culture medium. The changes which occur in the activity of fatty acid synthetase are due to changes in the amount of the enzyme present. They are not due to activation or inactivation of the enzyme. 3. The rate of lipogenesis (measured from [1-14C]acetate) in the explants during culture varies independently of the amount of fatty acid synthetase both in the presence and after removal of the hormones. Hence the amount of fatty acid synthetase does not limit lipogenesis. The proportion of medium-chain fatty acids C8:0 and C10:0 (which are characteristic of rabbit milk) synthesized by the explants in the presence of hormones increases at about the same rate as the amount of fatty acid synthetase present. However, when hormones are removed from the medium the proportion of these acids synthesized declines as rapidly as the rate of lipogenesis and not as the amount of fatty acid synthetase presen. 4. The rates of synthesis of fatty acid synthetase and of the total particulate-free supernatant protein in the explants were compared by measuring the incorporation of L-[U-14C]leucine into the protein of the explants. These rates increase by 5-fold and 3.6-fold respectively when explants are cultured with hormones, and they then reach approximately constant rates. When the hormones are removed there is a rapid fall in the rate of synthesis of fatty acid synthetase and of the total particulate-free supernatant protein to values which are similar to those obtained with freshly prepared explanted tissue. 5. In unstimulated explants fatty acid synthetase appears to be degraded with a half-life of 15-21h. During the hormonally stimulated differentiation of the tissue the rate of degradation of the enzyme is considerably decreased or is switched off completely. After the amount of fatty acid synthetase has increased to a maximum the enzyme complex is again degraded with a half-life of 23-29h. The removal of hormones after the explants have been hormonally stimulated for different times results in an increase in the rate of degradation of fatty acid synthetase. However, this increase only occurs if degradation was previously proceeding at a considerably decreased rate. The degradation of the total particulate-free supernatant protein continues throughout the period of differentiation of the explant tissue in culture. It appears to be somewhat decreased during the period of rapid maturation of the tissue during culture.  相似文献   

16.
The effect of local anesthetics on the stearoyl-CoA desaturase activity was studied using Tetrahymena microsomal preparation. Dibucaine, tetracaine, and propranolol, a beta-blocking agent, nonspecifically inhibited the activities of NADPH-ferrihemoprotein reductase as well as of stearoyl-CoA desaturase and the terminal component, but lidocaine and procaine had no effect on these activities. The inhibitory potency was decreased in the order of dibucaine greater than propranolol greater than tetracaine much greater than lidocaine = procaine. According to the double-reciprocal plots of stearoyl-CoA desaturase, the inhibition by dibucaine appeared to be noncompetitive with respect to stearoyl-CoA as substrate. However, the activity of NADH-ferricyanide reductase was not significantly affected by concentrations of propranolol and tetracaine lower than 10mM, but by dibucaine. The terminal component, cyanide-sensitive factor, was most sensitive to local anesthetics among the microsomal electron transport components, suggesting a rate-limiting enzyme.  相似文献   

17.
18.
In mice and other sensitive species, PPARalpha mediates the induction of mitochondrial, microsomal, and peroxisomal fatty acid oxidation, peroxisome proliferation, liver enlargement, and tumors by peroxisome proliferators. In order to identify PPARalpha-responsive human genes, HepG2 cells were engineered to express PPARalpha at concentrations similar to mouse liver. This resulted in the dramatic induction of mRNAs encoding the mitochondrial HMG-CoA synthase and increases in fatty acyl-CoA synthetase (3-8-fold) and carnitine palmitoyl-CoA transferase IA (2-4-fold) mRNAs that were dependent on PPARalpha expression and enhanced by exposure to the PPARalpha agonist Wy14643. A PPAR response element was identified in the proximal promoter of the human HMG-CoA synthase gene that is functional in its native context. These data suggest that humans retain a capacity for PPARalpha regulation of mitochondrial fatty acid oxidation and ketogenesis. Human liver is refractory to peroxisome proliferation, and increased expression of mRNAs for the peroxisomal fatty acyl-CoA oxidase, bifunctional enzyme, or thiolase, which accompanies peroxisome proliferation in responsive species, was not evident following Wy14643 treatment of cells expressing elevated levels of PPARalpha. Additionally, no significant differences were seen for the expression of apolipoprotein AI, AII, or CIII; medium chain acyl-CoA dehydrogenase; or stearoyl-CoA desaturase mRNAs.  相似文献   

19.
Stearoyl-CoA desaturase (EC 1.14.99.5) is a key enzyme in the biosynthesis of polyunsaturated fatty acids and the maintenance of the homeoviscous fluidity of biological membranes. The stearoyl-CoA desaturase cDNA in milkfish (Chanos chanos) was cloned by RT-PCR and RACE, and it was compared with the stearoyl-CoA desaturase in cold-tolerant teleosts, common carp and grass carp. Nucleotide sequence analysis revealed that the cDNA clone has a 972-bp open reading frame encoding 323 amino acid residues. Alignments of the deduced amino acid sequence showed that the milkfish stearoyl-CoA desaturase shares 79% and 75% identity with common carp and grass carp, and 63%–64% with other vertebrates such as sheep, hamsters, rats, mice, and humans. Like common carp and grass carp, the deduced amino acid sequence in milkfish well conserves three histidine cluster motifs (one HXXXXH and two HXXHH) that are essential for catalysis of stearoyl-CoA desaturase activity. However, RT-PCR analysis showed that stearoyl-CoA desaturase expression in milkfish is detected in the tissues of liver, muscle, kidney, brain, and gill, and more expression sites were found in milkfish than in common carp and grass carp. Phylogenic relationships among the deduced stearoyl-CoA desaturase amino acid sequence in milkfish and those in other vertebrates showed that the milkfish stearoyl-CoA desaturase amino acid sequence is phylogenetically closer to those of common carp and grass carp than to other higher vertebrates.  相似文献   

20.
Death Resulting from Fatty Acid Starvation in Yeast   总被引:12,自引:9,他引:3  
Mutants of Saccharomyces cerevisiae having the genotypes fas1 (fatty acid synthetase minus) and fas1, ole1 (fatty acid synthetase and fatty acid desaturase minus) were found to undergo logarithmic death when deprived of required fatty acids, whereas ole1 strains did not. During the first 2 to 3 h of fatty acid starvation, macromolecular synthesis occurred at apparently normal rates, although cell division stopped by the end of the 1st h. Cell death commenced at approximately the 2nd to the 3rd h, and within 24 h, depending upon conditions, 2 to 4 log orders of death had occurred. The loss of viability was accelerated by the addition of detergent, but could be largely prevented by the interruption of protein synthesis, either by amino acid starvation or by the use of cycloheximide. The possible significance of this phenomenon in terms of membrane biosynthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号