首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde, was purified fromMethylophaga sp. strain SK1. The active TMADH was purified 12.3-fold through three purification steps. The optimal pH and temperature for enzyme activity was determined to be 8.5 and 55°C, respectively. TheV max andK m values were 7.9 nmol/min/mg protein and 1.5 mM. A genomic DNA of 2,983 bp fromMethylophaga sp. strain SK1 was cloned, and DNA sequencing revealed the open reading frame (ORF) of the gene coding for TMADH. The ORF contained 728 amino acids with extensive identity (82%) to that ofMethylophilus methylotrophus W3A1.  相似文献   

2.
In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)-fixing cyanobacterium Trichodesmium create microscale nutrient-rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology of Trichodesmium, often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2 fixation in cultures of Trichodesmium without impairing growth rate, suggesting that Trichodesmium can use TMA as an alternate N source. In this study, 15N-TMA DNA stable isotope probing (SIP) of a Trichodesmium enrichment was employed to further investigate TMA metabolism and determine whether TMA-N is incorporated directly or secondarily via cross-feeding facilitated by microbial associates. Herein, we identify two members of the marine Roseobacter clade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4+), which was subsequently used by Trichodesmium and the rest of the community. The results implicate microbiome-mediated carbon (C) and N transformations in modulating N2 fixation and thus highlight the involvement of host-associated heterotrophs in global biogeochemical cycling.  相似文献   

3.
The change of dilution rate (D) on both Methylophilus methylotrophus NCIMB11348 and Methylobacterium sp. RXM CCMI908 growing in trimethylamine (TMA) chemostat cultures was studied in order to assess their ability to remove odours in fish processing plants. M. methylotrophus NCIMB11348 was grown at dilution rates of 0.012–0.084 h−1 and the biomass level slightly increased up to values of D around 0.07 h−1. The maximum cell production rate was obtained at 0.07 h−1 corresponding to a maximum conversion of carbon into cell mass (35%). The highest rate of TMA consumption was 3.04 mM h−1 occurring at D=0.076 h−1. Methylobacterium sp. RXM CCMI908 was grown under similar conditions. The biomass increased in a more steep manner up to values of D around 0.06 h−1. The maximum cell production rate (0.058 g l−1h−1) was obtained in the region close to 0.06 h−1 where a maximum conversion of the carbon into cell mass (40%) was observed. The maximum TMA consumption was 2.33 mM h−1 at D=0.075 h−1. The flux of carbon from TMA towards cell synthesis and carbon dioxide in both strains indicates that the cell is not excreting products but directing most of the carbon source to growth. Carbon recovery levels of approximately 100% show that the cultures are carbon-limited. Values for theoretical maximum yields and maintenance coefficients are presented along with a kinetic assessment based on the determination of the substrate saturation constant and maximum growth rate for each organism. Received: 25 February 1999 / Received revision: 14 May 1999 / Accepted: 17 May 1999  相似文献   

4.
Trimethylamine (TMA) and trimethylamine N‐oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin‐containing monooxygenase (FMO), is found widespread in marine bacteria and is responsible for converting TMA to TMAO. However, the molecular mechanism of TMA oxygenation by Tmm has not been explained. Here, we determined the crystal structures of two reaction intermediates of a marine bacterial Tmm (RnTmm) and elucidated the catalytic mechanism of TMA oxidation by RnTmm. The catalytic process of Tmm consists of a reductive half‐reaction and an oxidative half‐reaction. In the reductive half‐reaction, FAD is reduced and a C4a‐hydroperoxyflavin intermediate forms. In the oxidative half‐reaction, this intermediate attracts TMA through electronic interactions. After TMA binding, NADP+ bends and interacts with D317, shutting off the entrance to create a protected micro‐environment for catalysis and exposing C4a‐hydroperoxyflavin to TMA for oxidation. Sequence analysis suggests that the proposed catalytic mechanism is common for bacterial Tmms. These findings reveal the catalytic process of TMA oxidation by marine bacterial Tmm and first show that NADP+ undergoes a conformational change in the oxidative half‐reaction of FMOs.  相似文献   

5.
A hydrogen peroxide (H2O2) sensor was developed by electrodepositing Prussian blue (PB) on a gold electrode modified with (3-mercaptopropyl)-trimethoxysilane (MPS) polymer. The characterization of the self-assembled electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The results of electrochemical experiments showed that such constructed sensor had a favorable catalytic ability to reduce H2O2. The MPS film on the modified gold electrode greatly enhanced the pH-adaptive range of PB. Large surface-to-volume ratio property of double-layer 2d-network MPS-modified PB electrode enabled stable and highly sensitive performance of the non-enzymatic H2O2 sensor. The linear range of H2O2 determined is from 2.0 × 10−6 to 2.0 × 10−4 mol L−1 with a correlation coefficient of 0.9991 and a detection limit for H2O2 of 1.8 × 10−6 mol L−1. The influences of the potentially interfering substances on the determination of H2O2 were investigated. This modified electrode exhibits a good selectivity and high sensitivity with satisfactory results.  相似文献   

6.
The steady-state reaction of trimethylamine dehydrogenase (TMADH) with the artificial electron acceptor ferricenium hexafluorophosphate (Fc(+)) has been studied by stopped-flow spectroscopy, with particular reference to the mechanism of inhibition by trimethylamine (TMA). Previous studies have suggested that the presence of alternate redox cycles is responsible for the inhibition of activity seen in the high-substrate regime. Here, we demonstrate that partitioning between these redox cycles (termed the 0/2 and 1/3 cycles on the basis of the number of reducing equivalents present in the oxidized/reduced enzyme encountered in each cycle) is dependent on both TMA and electron acceptor concentration. The use of Fc(+) as electron acceptor has enabled a study of the major redox forms of TMADH present during steady-state turnover at different concentrations of substrate. Reduction of Fc(+) is found to occur via the 4Fe-4S center of TMADH and not the 6-S-cysteinyl flavin mononucleotide: the direction of electron flow is thus analogous to the route of electron transfer to the physiological electron acceptor, an electron-transferring flavoprotein (ETF). In steady-state reactions with Fc(+) as electron acceptor, partitioning between the 0/2 and 1/3 redox cycles is dependent on the concentration of the electron acceptor. In the high-concentration regime, inhibition is less pronounced, consistent with the predicted effects on the proposed branching kinetic scheme. Photodiode array analysis of the absorption spectrum of TMADH during steady-state turnover at high TMA concentrations reveals that one-electron reduced TMADH-possessing the anionic flavin semiquinone-is the predominant species. Conversely, at low concentrations of TMA, the enzyme is predominantly in the oxidized form during steady-state turnover. The data, together with evidence derived from enzyme-monitored turnover experiments performed at different concentrations of TMA, establish the operation of the branched kinetic scheme in steady-state reactions. With dimethylbutylamine (DMButA) as substrate, the partitioning between the 0/2 and 1/3 redox cycles is poised more toward the 0/2 cycle at all DMButA concentrations studied-an observation that is consistent with the inability of DMButA to act as an effective inhibitor of TMADH.  相似文献   

7.
Aims: To establish if tetradecyltrimethylammonium (TDTMA) might be degraded by pure culture of Pseudomonas strains, and how the presence of a Lewis’ acid in the medium influences its biodegradability. Methods and Results: From different strains of Pseudomonas screened, only Pseudomonas putida A ATCC 12633 grows with 50 mg l?1 of TDTMA as the sole carbon and nitrogen source. A monooxygenase activity catalyzed the initial step of the biodegradation. The trimethylamine (TMA) produced was used as nitrogen source or accumulated inside the cell. To decrease the intracellular TMA, the culture was divided, and 0·1 mmol l?1 AlCl3 added. In this way, the growth and TDTMA consumption increased. The internal concentration of TMA, determined using the fluorochrome Morin, decreased by the formation of Al3+ : TMA complex. Conclusions: Pseudomonas putida utilized TDTMA as its sole carbon and nitrogen source. The TMA produced in the initial step of the biodegradation by a monooxygenase activity was used as nitrogen source or accumulated inside the cell, affecting the bacterial growth. This effect was alleviated by the addition of AlCl3. Significance and Impact of the Study: The use of Lewis’ acids to sequester intracellular amines offers an alternative to achieve an efficient utilization of TDTMA by Ps. putida.  相似文献   

8.
A new amperometric biosensor for the detection of sugars was prepared. A glassy carbon electrode was modified with Prussian blue (PB) nanoparticles protected by chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles were assembled onto the electrode followed by the assembly of 4-mercaptophenylboronic acid (MPBA) onto the surface of gold nanoparticles through a sulfur–Au bond to fabricate a self-assembled biosensor. The PB nanoparticles protected by CS and PDDA were characterized using transmission electron microscopy and UV–vis absorption spectroscopy. The characterization of the self-assembled electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The pK a values of the MPBA monolayer before and after combining with sugars were determined. The fabricated electrode exhibited excellent performances for determining d(+)-glucose, d(+)-mannose, and d(−)-fructose on the basis of the change in i p of the Fe(CN)63−/4− ion in the presence of sugars.  相似文献   

9.
To compare the trimethylamine N-oxygenase activity of liver microsomes from house musk shrew (Suncus murinus) and rat, a sensitive method for the quantitation of trimethylamine (TMA) N-oxide was developed using gas chromatography with flame thermionic detection. The limit of quantification was 0.5 μM and the calibration curve was linear at least up to 5 μM in incubations containing liver microsomal preparations from Suncus. The intra-day RSD values ranged from 10.4 to 12.8 at 0.5 μM and from 3.5 to 6.7 at 5 μM. The inter-day RSD values were 11.6 and 6.5 at 0.5 and 5 μM, respectively. This method provides a sensitive assay for TMA N-oxygenase activity in liver microsomes. Using this method we found that Suncus was capable of N-oxidizing trimethylamine at a very slow rate.  相似文献   

10.
This article describes a simple fluorescence method for the determination of tetradecyltrimethylammonium mono-oxygenase (TTAB mono-oxygenase) activity involving N-dealkylation of tetradecyltrimethylammonium bromide with concomitant production of trimethylamine (TMA). Activity was determined by measuring the formation of TMA using the morin reagent and aluminum (Al). Morin reacts with Al to form a fluorescent complex, Al-morin. In the presence of TMA, Al is tightly associated with TMA and cannot be sequestered by morin, thus providing evidence for formation of the Al-TMA complex. The concentration of TMA is estimated by calibration graphs constructed by plotting the fluorescence intensity of the Al-morin complex versus TMA concentration. The fluorescence intensities of the Al-morin complexes quenched by TMA are linearly dependent on both the time of the TTAB mono-oxygenase reaction and the amount of protein used in the reaction. The kinetic behavior is characterized by K0.5 = 4.26 × 10−4 M, and the apparent Hill coefficient (napp) = 2.24. These values are both comparable to those determined by GC-MS (K0.5 = 4.41 × 10−4 M and napp = 2.35). The advantages of this assay include rapid and efficient implementation and potential employment for routine accurate determinations of TTAB mono-oxygenase activity over a wide range of substrate concentrations.  相似文献   

11.
 The gene coding for putidaredoxin has been synthesized using a combination of chemical and enzymatic methods and subsequently expressed in Escherichia coli. The recombinant protein characterized by electronic spectroscopy, mass spectrometry, and electrochemistry was found to be identical to putidaredoxin obtained from Pseudomonas putida. Polylysine was found to promote the fast and reversible electrochemistry of putidaredoxin at negatively charged electrodes such as indium-doped tin oxide or gold surfaces modified with mercaptoalkanoate groups. The value of the heterogeneous electron transfer rate constant obtained from solutions containing a mixture of putidaredoxin and polylysine (k s =1.3×10–3 cm/s) is one order of magnitude larger than the values reported previously at gold electrodes modified with mercaptoethylamine or at antimony-doped tin oxide semiconductor electrodes. It was observed that when the reduction potential of putidaredoxin is measured by cyclic voltammetry, the resultant value is consistently more positive (64 mV) than the reduction potential measured with potentiometric titrations. A comparison between the electrochemical responses of putidaredoxin and spinach ferredoxin, combined with the examination of their corresponding three-dimensional structures, indicates that the positive shift in the reduction potential of putidaredoxin originates from the formation of a transient complex between putidaredoxin and polylysine at the electrode surface. The formation of this transient complex modulates the reduction potential of putidaredoxin by lowering the value of the dielectric constant around its iron-sulfur cluster microenvironment, specifically by neutralizing negative charges surrounding the active site and by excluding water from the solvent exposed iron sulfur cluster. The observed positive shift in E°′, which is induced by complexation with polylysine at the electrode-surface, suggests that similar factors are likely to contribute to the anodic shift in the E°′ of cytochrome P450cam-bound putidaredoxin (+44 mV) with respect to the E°′ measured for free putidaredoxin. Received: 14 June 1999 / Accepted: 6 August 1999  相似文献   

12.
An electrochemical biosensor for determination of hydrogen peroxide (H2O2) was fabricated, based on the electrostatic immobilization of horseradish peroxidase (HRP) with one-dimensional gold nanowires (Au NWs) and TiO2 nanoparticles (nano-TiO2) on a gold electrode. The nano-TiO2 can give a biocompatible microenvironment and compact film, and the Au NWs can provide fast electron transferring rate and greatly add the amount of HRP molecules immobilized on the electrode surface. Au NWs were characterized by ultraviolet–visible spectra and transmission electron microscope. The electrode modification process was probed by cyclic voltammetry and electrochemical impedance spectroscopy. Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. Under optimal conditions, the linear range for the determination of H2O2 was from 2.3 × 10−6 to 2.4 × 10−3 M with a detection limit of 7.0 × 10−7 M (S/N = 3). Moreover, the proposed biosensor showed superior stability and high sensitivity.  相似文献   

13.
Summary Washed microsomal preparations (100 000 xg sediment) from the yeast Sporopachydermia cereana that had been grown on trimethylamine N-oxide as sole nitrogen source catalysed the NAD(P)H-dependent reduction of trimethylamine N-oxide to trimethylamine. Under anaerobic conditions, this was the sole reaction product, but under aerobic conditions only small amounts of trimethylamine accumulated, most being further metabolized to methylamine and formaldehyde (no detectable dimenthylamine accumulated due to its rapid turnover). In the absence of NAD(P)H, no formation of amines or formaldehyde from trimethylamine N-oxide was detected. The trimethylamine N-oxide reductase activity was inhibited by quinacrine, Cu2+ ions, triethylamine N-oxide (apparent K i 0.43 mM) and dimethyl sulphoxide (K i 0.94 mM). Chlorate and nitrate failed to inhibit the enzyme. The K m for trimethylamine N-oxide was 29 M. Triethylamine N-oxide was also reduced by the microsomal preparation with the formation of acetaldehyde, and this reduction was sensitive to the same inhibitors as trimethylamine N-oxide, suggesting that both amine oxides are metabolized by the same enzyme(s). It is concluded that trimethylamine N-oxide is metabolized in this yeast via an NAD(P)H-dependent reductase.Abbreviations TMAO triemthylamine N-oxide  相似文献   

14.
For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in Fe(CN)6 3−/Fe(CN)6 4− solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.  相似文献   

15.
During growth of Methanosarcina barkeri strain Fusaro on a mixture of trimethylamine and acetate, methane production and acetate consumption were biphasic. In the first phase trimethylamine (33 mmol x l-1) was depleted and some acetate (11–14 from 50 mmol x l-1) was metabolized simultaneously. In the second phase the remaining acetate was cleaved stoichiometrically into CH4 and CO2. Kinetic experiments with (2-14C)acetate revealed that only 2.5% of the methane produced in the first phase originated from acetate: 18% of the acetate metabolized was cleaved into CH4 and CO2, 23% of the acetate was oxidized, and 55% was assimilated. Methane produced from CD3–COOH in the first phase consisted of CD2H2 and CD3H in a ratio of 1:1.  相似文献   

16.
Wan S  Li G  Zu L  An T 《Bioresource technology》2011,102(12):6757-6760
A biotrickling filter packed with ceramic particles and seeded with B350 microorganisms was applied to remove trimethylamine (TMA) from gaseous waste. A 100% removal efficiency (RE) was obtained when the empty bed residence time (EBRT) was larger than 110 s at an inlet concentration of 0.30 mg/L. Maximum elimination capacity (EC) was 13.13 g m−3 h−1 (RE = 64.7%) at 55 s of EBRT. TMA concentrations <0.20 mg/L at 83 s of EBRT did not affect the REs (100%). Maximum EC was 13.95 g m−3 h−1 (RE = 78.1%) at a TMA concentration of 0.42 mg/L. Approximately 53.1% of the carbon in TMA was completely mineralized. Bacterial community analysis in the bioreactor revealed more than 21 species in a stable state. Based on all these results, biotrickling filter inoculated with B350 microorganisms is deemed highly capable of ridding waste gas of TMA.  相似文献   

17.
The present study examined the aerobic metabolism of trimethylamine in Pseudomonas putida A ATCC 12633 grown on tetradecyltrimethylammonium bromide or trimethylamine. In both conditions, the trimethylamine was used as a nitrogen source and also accumulated in the cell, slowing the bacterial growth. Decreased bacterial growth was counteracted by the addition of AlCl3. Cell-free extracts prepared from cells grown aerobically on tetradecyltrimethylammonium bromide exhibited trimethylamine monooxygenase activity that produced trimethylamine N-oxide and trimethylamine N-oxide demethylase activity that produced dimethylamine. Cell-free extracts from cells grown on trimethylamine exhibited trimethylamine dehydrogenase activity that produced dimethylamine, which was oxidized to methanal and methylamine by dimethylamine dehydrogenase. These results show that this bacterial strain uses two enzymes to initiate the oxidation of trimethylamine in aerobic conditions. The apparent Km for trimethylamine was 0.7 mM for trimethylamine monooxygenase and 4.0 mM for trimethylamine dehydrogenase, but both enzymes maintain similar catalytic efficiency (0.5 and 0.4, respectively). Trimethylamine dehydrogenase was inhibited by trimethylamine from 1 mM. Therefore, the accumulation of trimethylamine inside Pseudomonas putida A ATCC 12633 grown on tetradecyltrimethylammonium bromide or trimethylamine may be due to the low catalytic efficiency of trimethylamine monooxygenase and trimethylamine dehydrogenase.  相似文献   

18.
Endogenous trimethylamine (TMA) oxidation was inhibited by giving (±)-5-vinyl-2-oxazolidenethione to laying hens that had been bred for low TMA oxidase activity. The addition of TMA oxide to the diet (5 g kg?1) immediately produced an enormous increase in the TMA content of their eggs and a strong crab-like taint. Hens from another flock whose eggs were tainted when they were previously fed on capelin meal as a protein supplement (100 g kg?1) again showed this abnormality when TMA oxide was added to the diet (0.5 g kg?1) to simulate the amounts supplied by the meal. Tests with intravenous 14C-TMA demonstrated that their ability to oxidise TMA was lower than that of unaffected hens. Dietary TMA oxide and intravenous TMA reduced the oxidation of the test dose of 14C-TMA. The oxide had no effect when given intravenously and did not inhibit TMA oxidase in vitro. It was concluded that TMA oxide is an important source of TMA in fish meal and that tainting occurs when hens with inherently low TMA oxidase activity are overloaded with TMA derived from dietary TMA oxide and choline by the action of enteric bacteria. The sporadic occurrence of the taint in the field may be due partly to wide variations in the oxide content of fish meals.  相似文献   

19.
A biosensor system based on the difference in the oxygen uptake response of two microbial electrodes was developed to monitor trimethylamine (TMA). The first electrode, constructed using Pseudomonas aminovorans grown on TMA, was sensitive to TMA, trimethylamine N-oxide (TMAO), dimethylamine (DMA) and monomethylamine (MMA). The second electrode responding to TMAO, DMA and MMA was prepared using Ps. aminovorans grown on TMAO. The difference in oxygen uptake was linearly related to the TMA concentration in the range of 5-26 microM. The minimum detectable level was 2.6 microM and the relative standard deviation was determined to be 14% for 16 repeated analyses. When operated and stored at 30 degrees C, the response of the system was stable for only 2 days. However, when the biosensor system was operated at 30 degrees C but stored overnight at 4 degrees C, the system was stable up to 20 days. The biosensor system was applicable for the determination of TMA in fish tissue extracts and the results compared well with those determined by HPLC.  相似文献   

20.
A novel amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on the 2,6-pyridinedicarboxylic acid (PDC) polymer, thionine and nano-Au was successfully fabricated. In this strategy, PDC polymer acted as the matrices to covalently immobilize the thionine, and then hemoglobin was successfully adsorbed on the nano-Au which was electro-deposited on to thionine modified electrode surface. The preparation process of modified electrode was characterized with electrochemical impedance spectroscopy and atomic force microscope. The analytical performance of proposed biosensor toward H2O2 was investigated by cyclic voltammetry and chronoamperometry. The resulted biosensor exhibited fast amperometric response (within 6 s) to H2O2, and linear range was from 9.1 μM to 5.0 mM with the detection limit of 2.6 μM (S/N = 3). The apparent Michaelis–Menten constant (K Mapp) was evaluated to be 3.2 mM. Furthermore, the resulted biosensor showed good stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号