首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The BMR (6.00 ml O2·min–1) and thermal conductance (0.235 ml O2·min–1·°C–1) ofAmazona viridigenalis, a medium sized parrot, are close to allometrically predicted values for nonpasserine birds, but theT 1c of 26.5 °C is 8.5 °C higher than predicted (Fig. 1). Minimal respiratory frequencies measured in four species of birds average 60% of the rate predicted by a previous equation and yield the relationship, breaths·min–1= 10.3 kg–0.32. Frequencies are very dependent upon the methods used to obtain the data (Fig. 3). Resting values of respiratory parameters are poorly defined in the existing literature, and there are no single resting values within the TNZ analogous to a BMR. Rather values change within, as well as below and above, the TNZ. Minimal values of different parameters occur at differentT a's, not necessarily within the TNZ (Figs. 2, 4, 5). For clarity, resting respiratory parameters should be reported as standard values, analogous to standard metabolic rates, withT a specified. In birds the pattern of ventilation (f andV T) changes asT a changes resulting in different extraction efficiencies at a given minute volume (Figs. 6, 7). This facilitates adjustment to both changing oxygen demands and changing thermoregulatory needs.Abbreviations and symbols BMR basal metabolic rate - TNZ thermoneutral zone - T a ambient temperature - SMR standard metabolic rate - R.H. relative humidity - f respiratory frequency - br breath - T b body temperature - T lc lower critical temperature - Tuc upper critical temperature - T Rlc respiratory lower critical temperature - RQ respiratory quotient - extraction efficiency - V T tidal volume - minute volume (=V T xf)  相似文献   

2.
This study compared the mass-specific routine metabolic rate (RMR) of similar sized mulloway (Argyrosomus japonicus), a sedentary species, and yellowtail kingfish (Seriola lalandi), a highly active species, acclimated at one of several temperatures ranging from 10–35 °C. Respirometry was carried out in an open-top static system and RMR corrected for seawater–atmosphere O2 exchange using mass-balance equations. For both species RMR increased linearly with increasing temperature (T). RMR for mulloway was 5.78T − 29.0 mg O2 kg− 0.8 h− 1 and for yellowtail kingfish was 12.11T − 39.40 mg O2 kg− 0.8 h− 1. The factorial difference in RMR between mulloway and yellowtail kingfish ranged from 2.8 to 2.2 depending on temperature. The energetic cost of routine activity can be described as a function of temperature for mulloway as 1.93T − 9.68 kJ kg− 0.8 day− 1 and for yellowtail kingfish as 4.04T − 13.14 kJ kg− 0.8 day− 1. Over the full range of temperatures tested Q10 values were approximately 2 for both species while Q10 responses at each temperature increment varied considerably with mulloway and yellowtail kingfish displaying thermosensitivities indicative of each species respective niche habitat. RMR for mulloway was least thermally dependent at 28.5 °C and for yellowtail kingfish at 22.8 °C. Activation energies (Ea) calculated from Arrhenius plots were not significantly different between mulloway (47.6 kJ mol− 1) and yellowtail kingfish (44.1 kJ mol− 1).  相似文献   

3.
Basal metabolic rate (BMR) of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, and in particular changes in ambient temperatures (Ta). Southern Africa is characterized by an unpredictable environment with daily and seasonal variation. This study sought to evaluate the effects of seasonal changes in Ta on mass-specific resting metabolic rate (RMR), BMR and body temperature (Tb) of Red-winged Starlings (Onychognathus morio). They have a broad distribution, from Ethiopia to the Cape in South Africa and are medium-sized frugivorous birds. Metabolic rate (VO2) and Tb were measured in wild caught Red-winged Starlings after a period of summer and winter acclimatization in outdoor aviaries. RMR and BMR were significantly higher in winter than summer. Body mass of Starlings was significantly higher in winter compared with summer. The increased RMR and BMR in winter indicate improved ability to cope with cold and maintenance of a high Tb. These results show that the metabolism of Red-winged Starlings are not constant, but exhibit a pronounced seasonal phenotypic flexibility with maintenance of a high Tb.  相似文献   

4.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

5.
Most mammals are known to have clear circadian rhythms of body temperature (Tb) and metabolic rate. Large parts of the rhythms correspond to the oscillation of nonshivering thermogenesis (NST), dependent on visceral organ mass, and, affected by mass of brown adipose tissue (BAT). I tested whether: (1) a different levels of BMR result in respective changes of Tb values and the magnitude of daily RMR oscillations both within and below thermoneutrality; (2) the amplitude of daily variation of RMR depends on ambient temperature (Ta). I studied: (1) daily variation of body temperature at Ta of 23 °C, and (2) the rate of resting metabolism (RMR) within and below thermoneutrality at the time of minimum and increasing Tb (minimum and maximum NST capacity), in two lines of laboratory mice subjected to divergent, artificial selection toward high (HBMR) and low (LBMR) basal rate of metabolism (BMR). All mice had a clear circadian rhythm of Tb with minimum of 36.4±0.2 °C at 7:00 and maximum of 37.8±0.2 °C at 21:00. Their RMR measured below thermoneutrality exhibited significant daily variation, with the maximum between 16:00 and 19:00, when Tb was rising. Within thermoneutral zone (TNZ) I found between-line, but not between-time, differences in RMR. All between-line differences in RMR could be explained by the magnitude of BMR. I did not find any between-line differences of RMR value in temperatures below thermoneutrality. The amplitude of daily variation of RMR measured below TNZ depended neither on the Ta value nor on level of BMR (or visceral organs).  相似文献   

6.
Summary Evaporative water loss (EWL), oxygen concumption , and body temperature (Tb) of Anna's Hummingbirds (Calypte anna; ca. 4.5g) were measured at combinations of ambient temperature (Ta) and water vapor density (va) ranging from 20 to 37 °C and 2 to 27 g·m-3, respectively. The EWL decreased linearly with increasing va at all temperatures. The slopes of least squares regression lines relating EWL to va at different temperatures were not significantly different and averaged-0.50 mg H2O·m-3·g-2·h-1 (range:-0.39 to-0.61). Increased va restricted EWL in C. anna more than has been reported for other endotherms in dry air. The percent of metabolic heat production dissipated by evaporation ( ) was lower than that of other birds in dry air, but higher than that for other birds at high humidity when Ta 33 °C. When Ta>33 °C the effect of humidity on was similar to that in other birds. Calypte anna might become slightly hyperthermic at Ta>37 °C, which could augment heat transfer by increasing the Tb-Ta gradient. Body temperature for C. anna in this study was 43 °C (intramuscular) at Tas between 25 and 35 °C, which is above average for birds. It is estimated that field EWL is less than 30% of daily water loss in C. anna under mild temperature conditions (<35 °C).Abbreviations BMR basal metabolic rate - EWL evaporative water loss - percent of metabolic heat production dissipated by evaporation - ambient water vapor density - body surface water vapor density - RMR resting metabolic rate - Ta ambient-temperature - Tb body temperature - Td dew-point temperature - TNZ thermoneutral zone - Ts body surface temperature - carbon dioxide production - oxygen consumption  相似文献   

7.
Basal metabolic rate (BMR) is thought to be a major hub in the network of physiological mechanisms connecting life history traits. Evaporative water loss (EWL) is a physiological indicator that is widely used to measure water relations in inter- or intraspecific studies of birds in different environments. In this study, we examined the physiological responses of summer-acclimatized Hwamei Garrulax canorus to temperature by measuring their body temperature (Tb), metabolic rate (MR) and EWL at ambient temperatures (Ta) between 5 and 40 °C. Overall, we found that mean body temperature was 42.4 °C and average minimum thermal conductance (C) was 0.15 ml O2 g−1 h−1 °C−1 measured between 5 and 20 °C. The thermal neutral zone (TNZ) was 31.8–35.3 °C and BMR was 181.83 ml O2 h−1. Below the lower critical temperature, MR increased linearly with decreasing Ta according to the relationship: MR (ml O2 h−1)=266.59–2.66 Ta. At Tas above the upper critical temperature, MR increased with Ta according to the relationship: MR (ml O2 h−1)=−271.26+12.85 Ta. EWL increased with Ta according to the relationship: EWL (mg H2O h−1)=−19.16+12.64 Ta and exceeded metabolic water production at Ta>14.0 °C. The high Tb and thermal conductance, low BMR, narrow TNZ, and high evaporative water production/metabolic water production (EWP/MWP) ratio in the Hwamei are consistent with the idea that this species is adapted to warm, mesic climates, where metabolic thermogenesis and water conservation are not strong selective pressures.  相似文献   

8.
Summary Body temperature (T b), oxygen consumption , thermal conductance (C) and evaporative water loss (EWL) were measured at various air temperatures (T a) in two starlings which evolved in the tropics: a migratory species from a temperate climate,Sturnus vulgaris, and a resident, desert species,Onychognathus tristrami (Aves, Passeriformes, Sturnidae).AtT a's of 4–35°C both birds hadT b of 40.6°C. At 44°C,T b ofSturnus was 45.8°C and that ofOnychognathus 43.3°C.T a of 44°C was tolerated only byOnychognathus. The thermoneutral zone (TNZ) ofSturnus was in theT a range of 29.5°C–36.5°C, that ofOnychognathus 21.5–36.5°C. ofSturnus within its TNZ (BMR) was 2.37 ml O2 g–1 h–1, which is close to the expected BMR; that ofOnychognathus, 1.67 ml O2 g–1 h–1, is only 74% of the expected. AtT a'sNZ,C ofSturnus was twice as high as that ofOnychognathus and 1.68 times the expected value, whereasC ofOnychognathus was only 94% of the expected. At highT a'sOnychognathus had higherC thanSturnus. At either low or highT a's EWL ofSturnus was greater than ofOnychognathus.The responses shown bySturnus are typical of a tropical bird living in a moderate environment. This indicates that neither in USSR where it spends the summer, nor in Israel where it spends the winter, is this starling exposed to extreme temperatures.Onychognathus is better adapted not only to high but also to the low temperatures prevailing in mountainous regions of the desert.Symbols and abbreviations BMR basal metabolic rate - C thermal conductance - EWL evaporative water loss - HE evaporative heat loss - HP heat production - TNZ thermoneutral zone  相似文献   

9.
1. The fat mouse Steatomys pratensis natalensis (mean body mass 37.4±0.43 (se)) has a low euthermic body temperature Tb=30.1–33.8 °C and a low basal metabolic rate (BMR)=0.50 ml O2 g−1 h−1.
2. Below an ambient temperature (Ta)=15 °C, the mice were hypothermic.
3. The lowest survivable Ta=10 °C.
4. Torpor is efficient in conserving energy between Ta=15–30 °C, below Ta=15 °C, the mice arouse.
5. Euthermic and torpid mice were hyperthermic at Ta=35 °C.
6. Thermal conductance was 0.159 ml O2 g−1 h−1 °C−1, 98.8% of the expected value.
7. Non-shivering thermogenesis (NST) was 2.196 ml O2 g−1 h−1 (3.69×BMR).
8. Maximal oxygen consumption, however, was 3.83 ml O2 g−1 h−1 (6.44×BMR), indicating that other methods of heat production are additive.
9. Because fat mice conserve energy by torpor only between Ta=15–30 °C, we suggest that torpor may be a more important mechanism for surviving food shortages than for surviving cold weather.
Keywords: Steatomys pratensis natalensis; Metabolism; Torpor; Fat mouse  相似文献   

10.
The diving and thermoregulatory metabolic rates of two species of diving seabrid, common (Uria aalge) and thick-billed murres (U. lomvia), were studied in the laboratory. Post-absorptive resting metabolic rates were similar in both species, averaging 7.8 W·kg-1, and were not different in air or water (15–20°C). These values were 1.5–2 times higher than values predicted from published allometric equations. Feeding led to increases of 36 and 49%, diving caused increases of 82 and 140%, and preening led to increases of 107 and 196% above measured resting metabolic rates in common and thick-billed murres, respectively. Metabolic rates of both species increased linearly with decreasing water temperature; lower critical temperature was 15°C in common murres and 16°C in thick-billed murres. Conductance (assuming a constant body temperature) did not change with decreasing temperature, and was calculated at 3.59 W·m-2·oC-1 and 4.68 W·m-2·oC-1 in common and thick-billed murres, respectively. Murres spend a considerable amount of time in cold water which poses a significant thermal challenge to these relatively small seabirds. If thermal conductance does not change with decreasing water temperature, murres most likely rely upon increasing metabolism to maintain body temperature. The birds probably employ activities such as preening, diving, or food-induced thermogenesis to meet this challenge.Abbreviations ADL aerobic dive limit - BMR basal metabolic rate - FIT food-induced thermogenesis - MHP metabolic heat production - MR metabolic rate - PARR post-absorption resting rate - RMR resting metabolic rate - RQ respiratory quotient - SA surface area - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature - T IC Iower critical temperatiure - TC thermal conductance - V oxygen consumption rate - W body mass  相似文献   

11.
Seasonal thermoregulatory responses that are associated with cold tolerance have been reported for many species that inhabit regions where winters are severe (e.g. Holarctic), but relatively few studies have focused on species from regions where the climate is more unpredictable (e.g. Southern Africa). In this study, metabolic rate (VO2) and body temperature (Tb) was measured during summer and winter in captive Southern White-faced Scops-owl (Ptilopsis granti), to test for thermoregulatory responses representing energy conservation in winter. During winter the Southern White-faced Scops-owls increased resting metabolic rate (RMR) by 45% to regulate a set point Tb—a result similar to what had been shown in small passerines from the Holarctic region. Increased RMR and increased conductance at cold Ta's are suggestive of improved cold tolerance. Basal metabolic rate (BMR) was 0.60 mL O2 g−1 h−1 and showed no seasonal flexibility. Thus, contrary to expectation, the Southern White-faced Scops-owls showed seasonal thermoregulatory responses that are unlikely to represent energy conservation which was expected for a medium-sized bird inhabiting unpredictable climates in Southern Africa.  相似文献   

12.
Summary Values for basal metabolism, standard tidal volume (V T), standard minute volume ( ), and mean extraction efficiency (EO2) in the thermal neutral zone (TNZ) inAgapornis roseicollis (1.84 ml·min–1; 0.95 ml·br–1, STPD; and 33.3 ml·min–1, STPD; and 22.5%; respectively) were all very similar to values for these parameters previously measured inBolborhynchus lineola, a similarly sized, closely related species from a distinctly different habitat.Having both a lower critical temperature (Tlc) below and an upper critical temperature (Tuc) above those ofB. lineola, the TNZ ofA. roseicollis extended from 25° to at least 35°C. The thermal conductance below the TNZ ofA. roseicollis was 14% less than that ofB. lineola. Therefore, at 5°C the standard metabolic rate (SMR) of the former is 17% less than that of the latter, and at 35°C it is 20% less. At 5°CA. roseicollis has a lower EO2 and at 35°C a higher EO2 than that ofB. lineola. The patterns of resting energy metabolism and of ventilation ofA. roseicollis and ofB. lineola are consistent with the former species being better suited to living in a more variable thermal environment than the latter.MeanV T has a weak positive correlation with the rate of oxygen consumption ( ) at a constant ambient temperature (T a) but a much stronger correlation when resting increases in response to a decrease inT a.V t is the only ventilatory parameter which is linearly correlated toT a from 35° to –25°C. The data suggest thatT a may have a regulatory effect onV T somewhat independent of or .  相似文献   

13.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

14.
A comparison of the thermoregulation of water foraging wasps (Vespula vulgaris, Polistes dominulus) under special consideration of ambient temperature and solar radiation was conducted. The body surface temperature of living and dead wasps was measured by infrared thermography under natural conditions in their environment without disturbing the insects’ behaviour. The body temperature of both of them was positively correlated with Ta and solar radiation. At moderate Ta (22–28 °C) the regression lines revealed mean thorax temperatures (Tth) of 35.5–37.5 °C in Vespula, and of 28.6–33.7 °C in Polistes. At high Ta (30–39 °C) Tth was 37.2–40.6 °C in Vespula and 37.0–40.8 °C in Polistes. The thorax temperature excess (TthTa) increased at moderate Ta by 1.9 °C (Vespula) and 4.4 °C (Polistes) per kW−1 m−2. At high Ta it increased by 4.0 °C per kW−1 m−2 in both wasps. A comparison of the living water foraging Vespula and Polistes with dead wasps revealed a great difference in their thermoregulatory behaviour. At moderate Ta (22–28 °C) Vespula exhibited distinct endothermy in contrast to Polistes, which showed only a weak endothermic activity. At high Ta (30–39 °C) Vespula reduced their active heat production, and Polistes were always ectothermic. Both species exhibited an increasing cooling effort with increasing insolation and ambient temperature.  相似文献   

15.
Summary The effect of clustering behaviour on metabolism, body temperature, thermal conductance and evaporative water loss was investigated in speckled mousebirds at temperatures between 5 and 36°C. Within the thermal neutral zone (approximately 30–35 °C) basal metabolic rate of clusters of two birds (32.5 J·g-1·h-1) and four birds (28.5 J·g-1·h-1) was significantly lower by about 11% and 22%, respectively, than that of individuals (36.4 J·g-1·h-1). Similarly, below the lower critical temperature, the metabolism of clusters of two and four birds was about 14% and 31% lower, respectively, than for individual birds as a result of significantly lower total thermal conductance in clustered birds. Body temperature ranged from about 36 to 41°C and was positively correlated with ambient temperature in both individuals and clusters, but was less variable in clusters. Total evaporative water loss was similar in individuals and clusters and averaged 5–6% of body weight per day below 30°C in individuals and below 25°C in clusters. Above these temperatures total evaporative water loss increased and mousebirds could dissipate between 80 and 90% of their metabolic heat production at ambient temperatures between 36 and 39°C. Mousebirds not only clustered to sleep between sunset and sunrise but were also observed to cluster during the day, even at high ambient temperature. Whereas clustering at night and during cold, wet weather serves a thermoregulatory function, in that it allows the brrds to maintain body temperature at a reduced metabolic cost, clustering during the day is probably related to maintenance of social bonds within the flock.Abbreviations BMR basal metabolic rate - bw body weight - C totab total thermal conductance - EWI evaporative water loss - M metabolism - RH relative humidity - T a ambient temperature - T b body temperature - T ch chamber temperature - T cl cluster temperature - TEWL total evaporative water loss - LCT lower critical temperature - TNZ thermal neutral zone  相似文献   

16.
Summary The Diamond Dove, Geopelia cuneata, is the world's second smallest (ca. 35 g) species of the columbid order. The Diamond Dove is endemic in the arid and semiarid Mulga and Spinifex regions of Central and Western Australia. It regularly encounters ambient temperatures (T a ) in its habitat above +40° C, especially when foraging for seeds on bare ground cover, and may be found at up to 40 km from water. This entails extreme thermal stress, with evaporative cooling constrained by limited water supply. Energy metabolism (M), respiration, body temperature (T a ) and water budget were examined with regard to physiological adaptations to these extreme environmental conditions. The zone of thermal neutrality (TNZ) extended from +34° C to at least +45° C. Basal metabolic rate (BMR) was 34.10±4.19 J g–1h–1, corresponding to the values predicted for a typical columbid bird. Thermal conductance (C) was higher than predicted. Geopelia cuneata showed the typical breathing pattern of doves, a combination of normal breathing at a stable frequency (ca. 60 min–1) at low T a and panting followed by gular flutter (up to 960 min–1) at high T a . At T a > +36° C, T a increased to considerably higher levels without increasing metabolic rate, i.e. Q10=1. This enabled the doves not only to store heat but also to save the amout of water that would have been required for evaporative cooling if T a had remained constant. The birds were able to dissipate more than 100% of the metabolic heat by evaporation at T a +44° C. This was achieved by gular flutter (an extremely effective mechanism for evaporation), and also by a low metabolic rate due to the low Q10 value for metabolism during increased T b . At lower T a , Geopelia cuneata predominantly relied on non-evaporative mechanisms during heat stress, to save water. Total evaporative water loss over the whole T a range was 19–33% lower than expected. In this respect, their small body size proved to be an important advantage for successful survival in hot and arid environments.Abbreviations and units Body Mass W (g) - Ambient Temperature T a (°C) - Body Temperature T b (°C) - Thermoneutral Zone (TNZ) - Metabolism M (J g–1 h–1) - Thermal Conductance C - wet Thermal Conductance C wet (J g–1 h–1 °C–1) - Evaporative Water Loss EWL (mg H2O g–1 h–1) - Evaporative Heat Loss EHL (J g–1 h–1) - Breathing Frequency F (breaths min–1) - Tidal Volume V t (ml breath–1) - Standard Temperature Pressure Dry STPD - Body Temperature Pressure Saturated BTPS - Respiratory Quotient RQ - n.s. not significant (P>0.05) - n number of experiments  相似文献   

17.
Summary Breathing frequencyF r of resting blue-naped mousebirdsUrocolius macrourus lies between 50–70 per min and correlates directly with ambient temperatureT a and energy metabolismM. The nocturnal mean energy intake per breath varies between 5.6–17.7 mJ/g. At highT a the birds show gular fluttering with a relatively constantF r of about 460 min–1.M shows a constant absolute day-night difference of 25 J/g·h; the relative differences areT a-dependent between 36–168% (lower values at lowerT a). Thermal conductance is 2.10–2.15 J/g·h·°C (predicted 2.67), indicating a good insulation. Basal metabolic rate BMR is reduced by 63% compared to predicted values. At aT a-range of +8–36 °C the birds are normothermic. Below this range nocturnalT b andM decrease slightly with fallingT a. The birds show partial heterothermia (shallow hypothermia). Clustering is an effective energy saving strategy which allows loweringM with keeping highT b even at lowT a.Oxygen-intake is controlled byF r as well as by tidal volumeV t inT a-dependent changing portions.V T can vary between 0.29–0.91 ml (mean value 49.7 ml).Abbreviations T a ambient temperature - T b body temperature - M energy metabolism - F r breathing frequency - V T tidal volume - BMR basal metabolic rate - TNP thermoneutral point  相似文献   

18.
Altitudinal and seasonal effects on aerobic metabolism of deer mice   总被引:9,自引:0,他引:9  
Summary I compared the maximal aerobic metabolic rates ( ), field metabolic rates (FMR), aerobic reserves ( -FMR), and basal metabolic rates (BMR) of wild and recently captured deer mice from low (440 m) and high (3800 m) altitudes. To separate the effects of the thermal environment from other altitudinal effects, I examined mice from different altitudes, but similar thermal environments (i.e., summer mice from high altitude and winter mice from low altitude). When the thermal environment was similar, , FMR, and aerobic reserve of low and high altitude mice did not differ, but BMR was significantly higher at high altitude. Thus, in the absence of thermal differences, altitude had only minor effects on the aerobic metabolism of wild or recently captured deer mice.At low altitude, there was significant seasonal variation in , FMR, and aerobic reserve, but not BMR. BMR was correlated with , but not with FMR. The significant positive correlation of BMR with indicates a cost of high , because higher BMR increases food requirements and energy use during periods of thermoneutral conditions.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - partial pressure of oxygen - T a ambient temperature - T b body temperature - T e operative temperature - maximal aerobic metabolic rate  相似文献   

19.
Temperature probes were inserted into the stomachs of juvenile American alligators (Alligator mississippiensis) maintained outdoors at ambient fluctuating temperatures. Internal body temperatures (Tb) were measured every 15 min for two days, and then the alligators were injected with bacterial lipopolysaccharide (LPS), pyrogen-free saline, or left untreated. Alligators injected intraperitoneally with LPS exhibited maximum Tbs 2.6 ± 1.1 °C and 3.5 ± 1.2 °C higher than untreated control animals on days one and two after treatment, respectively. Tbs for these animals fell to within control ranges by day three postinjection. Similarly, mean preferred body temperatures (MPBTs) were significantly higher for LPS-injected alligators on days one (4.2 ± 1.8 °C) and two (3.5 ± 1.6 °C) after treatment. Intraperitoneal injection of heat-killed Aeromonas hydrophila, a gram-negative bacterium known to infect crocodilians, resulted in a fever while injection of Staphylococcus aureus (gram positive) did not elicit a febrile response. Injection of LPS in alligators maintained indoors in a constant temperature environment resulted in no increase in internal Tb. These results indicate that alligators did not exhibit a febrile response in the absence of a thermal gradient, and suggest that febrile responses observed are probably behavioral in nature.  相似文献   

20.
Summary The effect of short photoperiod and cold on metabolism and thermoregulation was investigated in pouched mice (Saccostomus campestris: Cricetidae) from three localities in southern Africa which experience contrasting climatic conditions. Mice were initially acclimated to long photoperiod (14L: 10D) at 25°C, followed first by a decline in photoperiod (to 10L: 14D) and then by a fall in temperature (to 10°C). Minimum observed metabolic rate (basal metabolic rate) was unaffected by the decline in photoperiod but increased significantly following cold acclimation. Because minimal thermal conductance remained constant throughout the study the increase in minimum observed metabolic rate caused a decline in lower critical temperature to around 26°C. In contrast to minimum observed metabolic rate, regulatory non-shivering thermogenesis improved significantly following the decline in both photoperiod and temperature. However, pouched mice from the warmest locality were significantly less responsive to photoperiod than those from the other two localities whose survival might depend upon their ability to accurately predict seasonal changes in temperature. Neither photoperiod nor temperature had any effect on body mass, yet pouched mice from the most arid locality, where food supply might be unpredictable, were significantly smaller and had lower total energy requirements than those from areas experiencing higher annual rainfall. These results indicate that S. campestris displays considerable geographical variation in energy requirements together with differences in the use of photoperiod as an anticipatory cue for predicting the onset of winter. These differences appear to be related to the availability of energy and the relative severity of climatic conditions in each locality.Abbreviations ANOVA analysis of variance - BMR basal metabolic rate - C m minimal thermal conductance - M b body mass - MOMR minimum observed metabolic rate - MWU Mann-Whitney U-test - NA noradrenaline - NST non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - T a ambient temperature - T b body temperature - T 1c lower critical temperature - oxygen consumption - maximum - following NA injection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号