首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Greening cells of Euglena were transferred back to darkness at different stages of chloroplast development in the presence or absence of specific inhibitors of protein synthesis. The analysis of chloroplast components showed that: (a) cycloheximide or streptomycin does not significantly inhibit the formation in darkness of active photosystem II (PSII) reaction centers if added after the lag phase for chloroplast development; (b) a limited number of active reaction centers are formed in the dark, sufficient to increase PSII reaction center to chlorophyll ratios to values close to those found in fully greened cells; (c) these dark-formed reaction centers appear to be inserted in already constituted and complete light-harvesting antennae. These results complement previous ones and lead us to propose a model for a sequential formation of PSII photosynthetic units during greening of Euglena, whereby conformational changes requiring time would allow already synthesized components of PSII reaction centers to be inserted or reorganized as active photochemical complexes in association with previously formed light-harvesting antennae.  相似文献   

2.
Dark-grown etiolated cells of Cyanidium caldarium mutant III-C lacking ≥99% of their normal chlorophyll content and inactive for photosynthesis were greened in continuous light. Measurements of oxygen evolution and fluorescence kinetics indicate that during greening: (a) the photosystem II (PSII) antenna containing between 30 and 40 chlorophyll a per center undergoes little change in size from 5% of the centers synthesized per cell to fully active cells; (b) energy transfer between PSII centers appears very early in the greening process; (c) the plastoquinone pool size per PSII center (about 14 equivalents) does not vary during greening and has already attained full size after synthesis of only 13% of the full complement of centers.  相似文献   

3.
Seven-day-old dark-grown bean leaves were greened under continuous light. The amount of chlorophyll, the ratio of chlorophyll a to chlorophyll b, the O2 evolving capacity and the primary photochemical activities of Photosystem I and Photosystem II were measured on the leaves after various times of greening. The primary photochemical activities were measured as the photo-oxidation of P700, the photoreduction of C-550, and the photo-oxidation of cytochrome b559 in intact leaves frozen to −196 C. The results indicate that the reaction centers of Photosystem I and Photosystem II begin to appear within the first few minutes and that Photosystem II reaction centers accumulate more rapidly than Photosystem I reaction centers during the first few hours of greening. The very early appearances of the primary photochemical activity of Photosystem II was also confirmed by light-induced fluorescence yield measurements at −196 C.  相似文献   

4.
The small hydrophobic polypeptide PsbT is associated with the photosystem II (PSII) reaction center (D1/D2 heterodimer). Here, we report the effect of the deletion of PsbT on the biogenesis of PSII complex during light-induced greening of y-1 mutants of the green alga Chlamydomonas reinhardtii. The y-1 is unable to synthesize chlorophylls in the dark but do so in the light. The dark-grown y-1 cells accumulated no major PSII proteins but a small amount of PsbT. Upon illumination, PsbT was immediately synthesized while chlorophylls, major PSII proteins, and O(2)-evolving activity increased after a 1-h lag. The y-1 cells without PsbT accumulated chlorophylls and PSI protein at a similar rate, whereas the accumulation of PSII complex was specifically retarded during greening. The absence of PsbT did not affect the synthesis of PSII proteins. These results indicate that PsbT is required for the efficient biogenesis of PSII complex.  相似文献   

5.
The relationships between light-harvesting chlorophyll and reaction centers in Photosystem II were analyzed during the chloroplast development of dark-grown, non-dividing Euglena gracilis Z. Comparative measurements included light saturation of photosynthesis, oxygen evolution under flashing-light and fluorescence induction. The results obtained can be summarized as follows: (1) Photosystem II photocenters are formed in parallel with chlorophyll synthesis, but after a long lag phase. (2) As a consequence, the chlorophyll reaction center ratio (Emerson's type photosynthetic unit) decreases during greening. (3) This decrease is accompanied by considerable changes in the energy transfer and trapping properties of Photosystem II. Most of the initially synthesized chlorophylls are inactive in the transfer of excitations to active photochemical centers and are shared among newly formed Photosystem II photocenters; as a consequence, the number of chlorophylls functionally connected to each Photosystem II photocenter decreases and cooperatively between these centers appears. Results are discussed in terms of chlorophyll organization in developing photosynthetic membranes with reference to the lake or puddle models of photosynthetic unit organization.  相似文献   

6.
Electrophoresis of thylakoid membrane polypeptides from Chlamydomonas reinhardi revealed two major polypeptide fractions. But electrophoresis of the total protein of green cells showed that these membrane polypeptides were not major components of the cell. However, a polypeptide fraction whose characteristics are those of fraction c (a designation used for reference in this paper), one of the two major polypeptides of thylakoid membranes, was resolved in the electrophoretic pattern of total protein of green cells. This polypeptide could not be detected in dark-grown, etiolated cells. Synthesis of the polypeptide occurred during greening of etiolated cells exposed to light. When chloramphenicol (final concentration, 200 µg/ml) was added to the medium during greening to inhibit chloroplastic protein synthesis, synthesis of chlorophyll and formation of thylakoid membranes were also inhibited to an extent resulting in levels of chlorophyll and membranes 20–25% of those found in control cells. However, synthesis of fraction c was not affected by the drug. This polypeptide appeared in the soluble fraction of the cell under these conditions, indicating that this protein was synthesized in the cytoplasm as a soluble component. When normally greening cells were transferred from light to dark, synthesis of the major membrane polypeptides decreased. Also, it was found that synthesis of both subunits of ribulose 1, 5-diphosphate carboxylase was inhibited by chloramphenicol, and that synthesis of this enzyme stopped when cells were transferred from light to dark.  相似文献   

7.
The functional status of photosystem II (PSII) complex in the dark-grown PsbO-deficient mutant of green alga Chlamydomonas reinhardtii was studied. It was found that ΔpsbO mutant cells of C. reinhardtii grown under heterotrophic conditions (dark + acetate) were capable of assembling stable, photochemically-competent reaction centers of PSII (as confirmed by immunological analysis of D1 protein level, pigments content and photoinduced changes of PSII chlorophyll fluorescence yield), while O2-evolution activity was not revealed. The ratio F v/F m for the dark-grown ΔpsbO mutant C. reinhardtii was 0.37 and that for the dark-grown wild type cells was 0.56. Analysis of chlorophyll fluorescence induction curve indicated that the absence of oxygen-evolving activity could be due to some defects in the organization of the PSII catalytic manganese cluster. Decrease of the rate of the electron donation from water-oxidizing complex to the PSII reaction center as well as the appearance of an additional transient fluorescence peak during the dark relaxation of F v testify to the damages to the PSII donor side. The data obtained suggest that the dark-grown PsbO-deficient cells of C. reinhardtii are able to form stable, photochemically active PSII reaction center, unable to oxidize water due to probable defects in the assembly of the manganese cluster.  相似文献   

8.
The development of photochemical activity during the greening of dark-grown barley seedlings (Hordeum vulgare L. cv. Svalöfs Bonus) was studied in relation to the formation of the high potential form of cytochrome b-559 (cytochrome b-559HP). Photosynthetic oxygen evolution from leaves was detected at 30 minutes of illumination. The rate of oxygen evolution per gram fresh weight of leaf was as high at 2 to 2.5 hours of greening as at 24 hours or in fully greened leaves. On a chlorophyll basis, the photosynthetic rate at 90 minutes of greening was 80-fold greater than the rate at 45 hours. It is concluded that the majority of photosynthetic units are functional at an early stage of greening, and that chlorophyll synthesis during greening serves to increase the size of the units.  相似文献   

9.
Expression of the genes of the photosystem II (PSII) core polypeptides D1 and D2, of three proteins of the oxygen evolving complex of PSII and of the light harvesting chlorophyll a/b binding proteins (LHCP) has been compared in wild-type (wt) and in the y-1 mutant of Chlamydomonas reinhardtii. Since wt, but not y-1 cells produce a fully developed photosynthetic system in the dark, comparison of the two has allowed us to distinguish the direct effect of light from the influence of plastid development on gene expression. The PSII core polypeptides and LHCP are nearly undetectable in dark-grown y-1 cells but they accumulate progressively during light induced greening. The levels of these proteins in wt are the same in the light and the dark. The amounts of the proteins of the oxygen evolving complex do not change appreciably in the light or in the dark for both wt and y-1. Steady state levels of chloroplast mRNA encoding the core PSII polypeptides remain nearly constant in the light or the dark and are not affected by the developmental stage of the plastid. Levels of nuclear encoded mRNAs for the oxygen evolving proteins and of LHCP increase during light growth in wt and y-1. In contrast to wt, synthesis of LHCP proteins is not detectable in y-1 cells in the dark but starts immediately after transfer to light, indicating that LHCP synthesis is controlled by a light-induced factor or process. While the rates of synthesis of D1 and D2 are immediately enhanced by light in wt, this increase occurs only after a lag in y-1 and thus must be dependent on an early light-induced event in the plastid. These results show that the biosynthesis of PSII is affected by light directly, by the stage of plastid development, and by the interaction of light and events associated with plastid development.  相似文献   

10.
The preparation of a rabbit antibody to ribulose-1,5-bisphosphate carboxylase (RuBPCase) from Euglena gracilis and its use to quantitate RuBPCase in dark- and light-grown cells and during light-induced chloroplast development (greening) are described. Light-grown Euglena have at least 36 times more RuBPCase than dark-grown Euglena. Light is required for both the initiation and continued increase in net synthesis of RuBPCase over the dark level: brief illumination 12 hours before exposure to continuous light eliminates the lags in the accumulation and increase in activity of RuBPCase (as well as in chlorophyll accumulation); net synthesis is blocked in greening cells returned to the dark or exposed to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Streptomycin or cycloheximide prevents RuBPCase accumulation when added at the beginning of greening but only partially blocks accumulation when added after 25 hours of greening. After 24 hours of greening, the activity of RuBPCase per milligram chlorophyll continues to increase slowly while concentration of the enzyme per milligram chlorophyll remains constant. This increased activity may be due to activation of the enzyme as well as to net synthesis.  相似文献   

11.
Geoffrey C. Owens  Itzhak Ohad 《BBA》1983,722(1):234-241
Thylakoid polypeptide phosphorylation has been studied in vivo and in vitro during plastid differentiation in Chlamydomonas reinhardii y-1. Pulse labeling cells at different stages of greening with [32P]orthophosphate revealed differences in the pattern of protein phosphorylation. In the early phase of greening the 44–47 kDa reaction center II polypeptides were labeled but the 22–24 kDa polypeptides of the light-harvesting chlorophyll ab-protein complex (LHC) were not. Later in the greening, coinciding with the formation of the antenna of Photosystem I and membrane stacking, the converse was found. Furthermore, the 22–24 kDa polypeptides of grana lamellae were less labeled than the same polypeptides found in the corresponding stroma lamellae. Polypeptides in the molecular mass range of 32–34 kDa were phosphorylated at all stages following the onset of greening. Dark-grown cells did not incorporate 32P in vivo or in vitro into the polypeptides present in the residual thylakoids. Similarly, cells greened in the presence of chloramphenicol, in which the synthesis of reaction centers is inhibited, showed no light-stimulated phosphorylation in vitro. However, the residual 32–34 kDa and 44–47 kDa polypeptides found in thylakoids of these cells were phosphorylated in vivo, whereas the LHC polypeptides synthesized in the presence of chloramphenicol were not. Phosphorylation of the LHC polypeptides (22–24 kDa) in these cells occurred if new reaction center polypeptides and all antennae components were formed, following removal of the inhibitor and further incubation of the cells in the light. Phosphorylation of LHC polypeptides was not resumed if active reaction centers were formed in the absence of complete restoration of all antenna components (incubation in the dark or light with addition of cycloheximide). It is concluded that phosphorylation is correlated with the thylakoid polypeptide content and organization.  相似文献   

12.
G. Dubertret  M. Lefort-Tran 《BBA》1978,503(2):316-332
The relationships between light-harvesting chlorophyll and reaction centers in Photosystem II were analyzed during the chloroplast development of dark-grown, non-dividing Euglena gracilis Z. Comparative measurements included light saturation of photosynthesis, oxygen evolution under flashing-light and fluorescence induction. The results obtained can be summarized as follows: (1) Photosystem II photocenters are formed in parallel with chlorophyll synthesis, but after a longer lag phase. (2) As a consequence, the chlorophyll: reaction center ratio (Emerson's type photosynthetic unit) decreases during greening. (3) This decrease is accompanied by considerable changes in the energy transfer and trapping properties of Photosystem II. Most of the initially synthesized chlorophylls are inactive in the transfer of excitations to active photochemical centers and are shared among newly formed Photosystem II photocenters; as a consequence, the number of chlorophylls functionally connected to each Photosystem II photocenter decreases and cooperativity between these centers appears. Results are discussed in terms of chlorophyll organization in developing photosynthetic membranes with reference to the lake or puddle models of photosynthetic unit organization.  相似文献   

13.
Under strong light, photosystem II (PSII) of oxygenic photosynthetic organisms is inactivated, and this phenomenon is called photoinhibition. In a widely accepted model, photoinhibition is induced by excess light energy, which is absorbed by chlorophyll but not utilized in photosynthesis. Using monochromatic light from the Okazaki Large Spectrograph and thylakoid membranes from Thermosynechococcus elongatus, we observed that UV and blue light inactivated the oxygen-evolving complex much faster than the photochemical reaction center of PSII. These observations suggested that the light-induced damage was associated with a UV- and blue light-absorbing center in the oxygen-evolving complex of PSII. The action spectrum of the primary event in photodamage to PSII revealed the strong effects of UV and blue light and differed considerably from the absorption spectra of chlorophyll and thylakoid membranes. By contrast to the photoinduced inactivation of the oxygen-evolving complex in untreated thylakoid membranes, red light efficiently induced inactivation of the PSII reaction center in Tris-treated thylakoid membranes, and the action spectrum resembled the absorption spectrum of chlorophyll. Our observations suggest that photodamage to PSII occurs in two steps. Step 1 is the light-induced inactivation of the oxygen-evolving complex. Step 2, occurring after step 1 is complete, is the inactivation of the PSII reaction center by light absorbed by chlorophyll. We confirmed our model by illumination of untreated thylakoid membranes with blue and UV light, which inactivated the oxygen-evolving complex, and then with red light, which inactivated the photochemical reaction center.  相似文献   

14.
Photosynthetic electron flow, polypeptide pattern, presence of chlorophyll-protein complexes, and phosphorylation of thylakoid polypeptides have been investigated in differentiated mesophyll (M) and bundle sheath (B) thylakoids of the C4 plant Zea mays. The polypeptide pattern of M thylakoids and their photosynthetic electron flow are comparable to those of other green plants. B thylakoids exhibit only photosystem I (PSI) activity, contain only traces of the PSII light harvesting (LHCII) polypeptide, do not bind [3H] diuron, and lack polypeptides of the water-oxidation complex of PSII and the herbicide binding 32-kDa polypeptide, as detected by specific antibodies. However, B thylakoids possess a partially active PSII reaction center, as demonstrated by light-dependent reduction of silicomolybdate with 1,5-diphenylcarbazide (DPC) as an electron donor, and the presence of the PSII reaction center polypeptides of 44-47 kDa. Only one chlorophyll a-protein complex, corresponding to the PSI reaction center-core antenna, was detectable in B thylakoids, as opposed to chlorophyll a and chlorophyll a,b-protein complexes present in M thylakoids. The light-dependent, membrane-bound kinase activity present in M thylakoids could not be detected in B thylakoids which, nevertheless, contain a protein kinase able to phosphorylate casein. A total of 19 differences between the electrophoretic pattern of B and M thylakoid polypeptides were observed. The mRNA coding for the LHCII polypeptide is primarily, if not exclusively, localized in M cells. The development of PSII complex precedes that of PSI during the differentiation of B and M chloroplasts in expanding leaves of light-grown plants and during the greening of dark-grown etiolated seedlings. The differentiation of the maize leaf into cells programmed to form B or M chloroplasts does not require light. In light-grown plants, the differentiation of B and M thylakoids occurred progressively from the base of the leaf and was completed at 4-5 cm from the leaf base.  相似文献   

15.
Photoinhibition of O2 evolution and reactions leading to millisecond-delayed light emission (ms-DLE) of chlorophyll by illumination of leaves with excess white light were investigated in wheat seedlings greened for different times in a special chamber with constant conditions (20°C; CO2 and humidity). A sharp reduction in initial and steady state rates of O2 evolution and in the intensity of different components of ms-DLE under excess light on the stage of lag-phase of chlorophyll biosynthesis (4–6h of greening) were observed. An increasing stability of the oxygen-evolving process and ms-DLE of chlorophyll during formation of the thylakoid membrane photosystems (12–24 h of greening) was shown. Rifampicin did not influence the stability of oxygen evolution whereas cycloheximide led to the intensification of photoinhibition of the initial and steady-state rates of oxygen evolution under the inhibitory light action. The early stages of photosystems formation during short time of greening of etiolated seedlings were more sensitive to the action of inhibitory light, possibly due to a weak interaction of the oxygen-evolving system components and connection with reaction centers of Photosystem II.  相似文献   

16.
17.
18.
Light-induced damage of the photosynthetic apparatus is an important and complex phenomenon, which affects primarily the photosystem II (PSII) complex. Here, the author summarizes the current state of understanding, which concerns the role of charge recombination reactions in photodamage and photoprotection. The main mechanism of photodamage induced by visible light appears to be mediated by acceptor side modifications, which develop under light intensity conditions when the capacity of light-independent photosynthetic processes limits the utilization of electrons produced in the initial photoreactions. This situation facilitates triplet chlorophyll formation and singlet oxygen production in the reaction center of PSII, which initiates the damage of electron transport components and protein structure. This mechanism is an important, but not exclusive, pathway of photodamage, and light-induced inactivation of the Mn cluster of water oxidation may occur in parallel with the singlet oxygen-dependent pathway.  相似文献   

19.
20.
Greening of etiolated bean leaves in far red light   总被引:14,自引:11,他引:3       下载免费PDF全文
Eight-day-old dark-grown bean leaves were greened by prolonged irradiation with far red light. Growth, chlorophyll content, oxygen-evolving capacity, photophosphorylation capacity, chloroplast structure (by electron microscopy), and in vivo forms of chlorophyll (by low temperature absorption and derivative spectroscopy on intact leaves) were followed during the greening process. Chlorophyll a accumulated slowly but continuously during the 7 days of the experiment (each day consisted of 12 hours of far red light and 12 hours of darkness). Chlorophyll b was not detected until the 5th day. The capacity for oxygen evolution and photophosphorylation began at about the 2nd day. Electron microscopy showed little formation of grana during the 7 days but rather unfused stacks of primary thylakoids. The thylakoids would fuse to give grana if the leaves were placed subsequently in white light. The low temperature spectroscopy of intact leaves showed that the chlorophyll a was differentiated into three forms with absorption maxima near 670, 677, and 683 nanometers at −196 C during the first few hours and that these forms accumulated throughout the greening process. Small amounts of two longer wavelength forms with maxima near 690 and 698 nanometers appeared at about the same time as photosynthetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号