共查询到20条相似文献,搜索用时 15 毫秒
1.
At a time where much of the discussion about major issues in nature conservation is necessarily undertaken at a global level, it is still important to consider the needs of the smaller organizations who do much of the grass roots work in the protection of wildlife and biodiversity. This study focuses on one such group, and examines how the contingent valuation method can be used to help to inform its decisions relating to the management of its portfolio of reserves in order to maximize benefits to its members. This paper argues that at a local level, where actions will not have significant global effects, contingent valuation methodology can inform decisions by assessing the value of additional reserves or particular conservation programmes to members in terms of their willingness to pay to acquire or implement them. 相似文献
2.
Liis Kasari Liina Saar Francesco de Bello Krista Takkis Aveliina Helm 《Biodiversity and Conservation》2016,25(14):3023-3041
Calcareous grasslands have become severely threatened habitats in Europe. The aim of this study was to investigate the changes in plant species richness, and functional and phylogenetic diversity in northern Estonian calcareous (alvar) grasslands resampled after 90 years of land-use change. Functional traits characterizing species that have benefited most from decreased habitat area and altered environmental conditions, and additional species that can potentially inhabit the remaining grassland patches were identified. Also changes in the relative amount of habitat-specific species were studied to detect a possible decrease in habitat integrity. Although grasslands in the studied region had lost most of their original area (~90 %), species richness had substantially increased due to invasion by more competitive, nutrient-demanding native species. Functional diversity generally increased, whereas phylogenetic diversity showed no response to altered conditions. Overall, these grasslands have lost their integrity as calcareous grassland habitat type in the region, because the relative amount of habitat-specific characteristic species has declined significantly. However, although the grasslands have transformed to a ‘hybrid’ habitat type and restoration to their previous state is likely not reasonable, such degraded species-rich grassland fragments can still be recognized as important habitats to preserve high local biodiversity and several characteristic species of calcareous grasslands. As current landscapes consist of an increasing number of hybrid and novel communities, new tools to supplement traditional conservation or restoration practices are necessary to recognize and maintain regions and habitats of high local biodiversity. 相似文献
3.
长江流域的生物多样性及其与经济协调发展的对策 总被引:5,自引:0,他引:5
长江流域的生物多样性及其与经济协调发展的对策陈家宽李博(武汉大学生命科学学院,武汉430072)吴千红(复旦大学生命科学学院,上海200433)众所周知,生物多样性(biodiversity)是当代国际社会日益关注的重大问题之一。生物多样性是人类赖以... 相似文献
4.
5.
生态位模型的基本原理及其在生物多样性保护中的应用 总被引:14,自引:0,他引:14
生态位模型是利用物种已知的分布数据和相关环境变量,根据一定的算法来推算物种的生态需求,然后将运算结果投射至不同的空间和时间中来预测物种的实际分布和潜在分布.近年来,该类模型被越来越多地应用在入侵生物学、保护生物学、全球气候变化对物种分布影响以及传染病空间传播的研究中.然而,由于生态位模型的理论基础未被深入理解,导致得出入侵物种生态位迁移等不符合实际的结论.作者从生态位与物种分布的关系、生态位模型构建的基本原理以及生态位模型和生态位的关系等方面探讨了生态位模型的理论基础.非生物的气候因素、物种间的相互作用和物种的迁移能力是影响物种分布的3个主要因素,它们在不同的空间尺度下作用于物种的分布.生态位模型是利用物种分布点所关联的环境变量来模拟物种的分布,这些分布点本身关联着该物种和其他物种间的相互作用,因此生态位模型所模拟的是现实生态位(realized niche)或潜在生态位(potential niche),而不是基础生态位(fundamental niche).Grinnell生态位和Elton生态位均在生态位模型中得到反映,这取决于环境变量类型的选择、所采用环境变量的分辨率以及物种自身的迁移能力.生态位模型在生物多样性保护中的应用主要包括物种的生态需求分析、未知物种或种群的探索和发现、自然保护区的选择和设计、物种入侵风险评价、气候变化对物种分布的影响、近缘物种生态位保守性及基于生态位分化的物种界定等方面. 相似文献
6.
Álvaro Fernández-Llamazares Jordina Belmonte Martí Boada Sara Fraixedas 《Aerobiologia》2014,30(2):111-122
The magnitude and complexity of the current erosion of plant biodiversity call for the development of interdisciplinary tools that enable an early detection of its effects and the establishment of effective management strategies. Indeed, plant sciences face the complex task of identifying the ecological information needed for the conservation challenge. Along this line should be placed the approach of aerobiology to gather the essential information for the development of plant recovery guidelines. In this work, we aim to discuss the potential role of airborne pollen monitoring in providing relevant data for the protection of plants and its potential applications to the management of plant diversity. To this end, we review three study cases where aerobiological monitoring can provide significant insights on conservation science. The present study is a contribution to plant conservation biology through long-term aeropalynological sampling, on the basis that pollen records constitute a suitable indicator for evaluating resource conservation of vegetation responding to environmental fluctuations. In view of its position between botany and meteorology, the contribution of aerobiological knowledge to biodiversity conservation can be very relevant and should be explored thoroughly. 相似文献
7.
8.
Paul D. Haemig 《Biodiversity and Conservation》2001,10(4):527-540
Increased predation and parasitism of bird nests has become a major problem in many biological communities altered by human activities, often causing declines in bird populations. To help solve this threat to biodiversity, I propose restoring the abundance of symbiotic nest-protecting animals in habitats where birds face an increased risk from predators and parasites, so that birds there can increase their chances of reproductive success by nesting close to these protectors. The re-establishment of such protective nesting associations to increase avian reproductive success differs from other proposed solutions to this problem in that it involves point defense of bird nests themselves. Rather than diminishing the number of nest predators and brood parasites in the whole habitat or community, as proposed with other approaches, the presence, activity and success of these enemies are reduced only within the microhabitat defended by the protector. The animal protecting the nest need not be larger in size than the predators or brood parasites, and is often many times smaller. In addition, it need not be from a higher trophic position, and in many cases comes from the same or a lower trophic level. Research suggests that an informed and careful use of nest protecting animals by wildlife managers can help reverse or prevent the decline of many bird populations, especially when used in combination with other approaches such as restoration of top predator populations and habitats. Although wildlife biologists have long recognized the important role that plants play in concealing and protecting bird nests from enemies, and regularly recommend manipulation of vegetation to enhance nest survival, they have generally ignored the important role that formidable animals play in protecting bird nests, and failed to incorporate animal protectors into management strategies. Because of this neglect, a host of new studies and experiments are urgently needed to provide managers with the critical information needed to use protective nesting associations effectively in integrated strategies to preserve avian biodiversity. 相似文献
9.
Despite an increasing amount of data on the effects of tropical land use on continental forest fauna and flora, it is debatable whether the choice of the indicator variables allows for a proper evaluation of the role of modified habitats in mitigating the global biodiversity crisis. While many single-taxon studies have highlighted that species with narrow geographic ranges especially suffer from habitat modification, there is no multi-taxa study available which consistently focuses on geographic range composition of the studied indicator groups. We compiled geographic range data for 180 bird, 119 butterfly, 204 tree and 219 understorey plant species sampled along a gradient of habitat modification ranging from near-primary forest through young secondary forest and agroforestry systems to annual crops in the southwestern lowlands of Cameroon. We found very similar patterns of declining species richness with increasing habitat modification between taxon-specific groups of similar geographic range categories. At the 8 km(2) spatial level, estimated richness of endemic species declined in all groups by 21% (birds) to 91% (trees) from forests to annual crops, while estimated richness of widespread species increased by +101% (trees) to +275% (understorey plants), or remained stable (-2%, butterflies). Even traditional agroforestry systems lost estimated endemic species richness by -18% (birds) to -90% (understorey plants). Endemic species richness of one taxon explained between 37% and 57% of others (positive correlations) and taxon-specific richness in widespread species explained up to 76% of variation in richness of endemic species (negative correlations). The key implication of this study is that the range size aspect is fundamental in assessments of conservation value via species inventory data from modified habitats. The study also suggests that even ecologically friendly agricultural matrices may be of much lower value for tropical conservation than indicated by mere biodiversity value. 相似文献
10.
11.
Land use and drought interactively affect interspecific competition and species diversity at the local scale in a semiarid steppe ecosystem 总被引:1,自引:0,他引:1
Y. Z. Gao M. Giese X. G. Han D. L. Wang Z. Y. Zhou H. Brueck S. Lin F. Taube 《Ecological Research》2009,24(3):627-635
Few studies have considered interactive effects of grazing and drought on species composition and the relative contribution of species to total biomass, although it is important to understand the short-term dynamics and community succession in grazed ecosystems. We monitored species diversity and relative biomass contribution at one site protected from grazing since 1979 (UG79), and at winter grazing (WG) and heavily grazed (HG) sites. Continuous heavy grazing resulted in lower plant height and more but small individuals (tillers or stolons). Drought significantly reduced total plant density on all sites. Grazing affected species diversity more than drought. Species richness at site UG79 was significantly higher than at sites WG and HG, while drought only tended to reduce species diversity. Drought stress and grazing disturbance interactively controlled species competition and functional groups. Both perennial grasses and forbs had greater contribution to total biomass at site UG79, and perennial grasses contributed more than 97% of total biomass at site WG. The contribution to total biomass of annual forbs and semi-shrubs significantly increased at site HG after two dry years. The significant decrease in Potentilla acaulis and a substantial increase in annual species at this site indicate that the perennial vegetation of this ecosystem is in great danger of extinction under conditions of prolonged drought. 相似文献
12.
Filipe Vicente 《Biodiversity and Conservation》2010,19(13):3629-3634
The concern about the preservation of biodiversity is due, in part, to a great level of media coverage granted in the last
few years to global warming and consequential climatic changes. However, there are still considerably large gaps in scientific
knowledge regarding the ecological status of many species, which results in an absence of conservation strategy for most of
Earth’s biodiversity in need of it. The extinction of many animal and plant species can have catastrophic consequences on
the ecosystems’ balance and also in human well-being, resultant from the break of ecological services. To exemplify how a
specific group of microscopic animals can be endangered, I have analyzed the case of the phylum Tardigrada. Tardigrades are microscopic animals that inhabit most environments: terrestrial, freshwater and marine. Even though many
species are widespread and the terrestrial ones granted with cryptobiotic skills, they are adapted to each habitat type and,
additionally, to local environmental patterns. This means that these tiny metazoans can be under significant environmental
pressure in the various habitat types they are found in. The potential need of protective and compensatory measures aiming
for appropriate conservation of these life forms is discussed, as is the need of studying for their objective elaboration. 相似文献
13.
集合种群与生物多样性保护 总被引:8,自引:0,他引:8
集合种群的概念受到空前的重视,其精髓是强调物种受局域和区域两个空间尺度上生态学过程的共同作用。主要介绍了集合种群概念的由来、集合种群动态理论以及集合种群理论在生物多样性保护及生物防治中一些可能的应用。 相似文献
14.
The role of trade-offs in biodiversity conservation planning: Linking local management, regional planning and global conservation efforts 总被引:4,自引:0,他引:4
Biodiversity conservation planning requires trade-offs, given the realities of limited resources and the competing demands
of society. If net benefits for society are important, biodiversity assessment cannot occur without other sectoral factors
“on the table”. In trade-offs approaches, the biodiversity value of a given area is expressed in terms of the species or other
components of biodiversity that it has that are additional to the components protected elsewhere. That “marginal gain” is
called thecomplementarity value of the area. A recent whole-country planning study for Papua New Guinea illustrates the importance of complementarity-based
tradeoffs in determining priority areas for biodiversity conservation, and for designing economic instruments such as biodiversity
levies and offsets. Two international biodiversity programs provide important new opportunities for biodiversity trade-offs
taking complementarity into account. Both the Millennium Ecosystem Assessment and the Critical Ecosystems or “hotspots” programs
can benefit from an explicit framework that incorporates tradeoffs, in which a balance is achieved not only by land-use allocation
among areas, but also by the crediting of partial protection of biodiversity provided by sympathetic management within areas.
For both international programs, our trade-offs framework can provide a natural linkage between local, regional and global
planning levels. 相似文献
15.
16.
John C. Briggs 《Diversity & distributions》2007,13(5):544-555
The horizontal temperature zones of the earth tend to restrict the latitudinal ranges of species but allow the possibility of exceedingly broad longitudinal dispersals. In the Tropical Zone, biodiversity on the continental shelves is not homogeneous but is concentrated in two conspicuous peaks, one in the Indo‐Pacific Ocean and the other in the Atlantic. The Indo‐Pacific biodiversity peak is located within a relatively small area called the East Indies Triangle. The Atlantic peak is located in the southern Caribbean Sea. Evidence that has been accumulated over the years indicates that each area functions as a centre of origin and evolutionary radiation. What are the causes of these concentrations and their present functions? A newly published model indicates a positive relationship between environmental temperature and the rate of speciation. While this helps to explain the generally high tropical diversity, and the negative relationship between diversity and latitude, it does not provide a reason for the longitudinal concentrations. But, other new research serves to substantiate previous indications of a positive relationship between speciation rate and species diversity. The existence of this positive feedback, together with some contributory factors, provides the reason why concentrations occur. The evolutionary radiation probably begins when the build‐up of species diversity reaches a critical level. The warm‐temperate biotas are derived from the tropics. Their northern longitudinal relationships tend to be minor but, in the southern hemisphere, the West Wind Drift is an important dispersal mechanism for both warm‐temperate and cold‐temperate species. The cold‐temperate biotas peaked in two areas, the North Pacific and the Antarctic; each has developed into a centre of origin. The continuous dispersal of well‐adapted species from the centres helps peripheral communities maintain diversity. 相似文献
17.
Sophie S. Parker 《Biodiversity and Conservation》2010,19(13):3743-3756
Soils are incredibly biodiverse habitats, yet soil-dwelling organisms have received little attention within the field of conservation biology. Due to difficulties involved in studying soil biota, and to taxonomic biases in conservation research, the full extent of soil biodiversity is not well understood, and soil-dwelling organisms are rarely candidates for conservation. The biogeography of soil biota differs significantly from that of plants or animals aboveground, and the taxonomic and functional diversity of soil-dwellers allows them to have a multitude of ecological effects on aboveground organisms. Soil organisms exhibit levels of biodiversity several orders of magnitude greater than those found in their aboveground counterparts on a per-area basis. The biodiversity of soils underpins many crucial ecosystem services which support the plants and animals typically targeted by conservation efforts. Strategies detailed in this paper provide practitioners with the ability to address many of the challenges related to incorporating soils and soil organisms into conservation planning. 相似文献
18.
Land use impacts on biodiversity in LCA: a global approach 总被引:1,自引:0,他引:1
Laura de Baan Rob Alkemade Thomas Koellner 《The International Journal of Life Cycle Assessment》2013,18(6):1216-1230
Purpose
Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs.Methods
The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared.Results and discussion
An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause–effect chains remain.Conclusions
The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are needed. 相似文献19.
The use of geographical information systems in biodiversity exploration and conservation 总被引:3,自引:0,他引:3
Peter G. Jones Stephen E. Beebe Joe Tohme Nicholas W. Galwey 《Biodiversity and Conservation》1997,6(7):947-958
We describe a method for applying geographical information systems (GIS) to exploring biodiversity in the wild relatives of crop species and illustrate its application to the wild common bean (Phaseolus vulgaris L.). We use the latitude, longitude and altitude of the location of origin of each accession in a germplasm collection of wild P. vulgaris, along with long-term monthly mean values of rainfall, temperature and diurnal temperature range for about 10000 stations throughout Latin America to produce maps indicating areas with bean-favouring climates. In a test case, these identify a new suitable area in Colombia where wild P. vulgaris has been reported in the literature, and two more areas which are strong candidates on other grounds. Dividing the bean-favouring climates into clusters identifies areas that have similar climates but are geographically remote, where we can expect to find wild beans with similar ecological adaptation. We discuss the implications of these results for conserving and improving the common bean, and the application of these methods to other species. 相似文献
20.
Rita C. Schenck 《The International Journal of Life Cycle Assessment》2001,6(2):114-117
Background The primary purpose of environmental assessment is to protect biological systems. Data collected over the last several decades
indicates that the greatest impacts on biological resources derive from physical changes in land use. However, to date there
is no consensus on indicators of land use that could be applicable worldwide at all scales. This has hampered the assessment
of land use in the context of LCA.
Objectives The Institute for Environmental Research and Education and its partner Defenders of Wildlife have begun an effort to develop
the necessary consensus.
Methods In July 2000, they held a workshop attended by a diverse group of interested parties and experts to develop a preliminary
list of life cycle indicators for land use impacts.
Results Their preliminary list of impact indicators includes: protection of priority habitats/species; soil characteristics: soil
health; proximity to & protection of high priority vegetative communities; interface between water and terrestrial habitats/buffer
zones; assimilative capacity of water and land; hydrological function; percent coverage of invasive species within protected
areas; road density; percent native-dominated vegetation; restoration of native vegetation; adoption of Best Management Practices
linked to biodiversity objectives; distribution (patchiness; evenness, etc.); and connectivity of native habitat.
Conclusion The list of indicators conforms well to other efforts in developing indicators. There appears to be convergence among experts
in the field and in related fields on the appropriate things to measure.
Future Prospects These indicators are currently being tested in the United States. Further workshops and testing is planned towards developing
internationally recognized indicators for land use. 相似文献