首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new, marine, sand‐dwelling raphidophyte from Sylt, Germany, Haramonas viridis Horiguchi et Hoppenrath sp. nov. is described. This represents a second species in the previously monotypic genus Haramonas, which was originally described from a sand sample from a mangrove river mouth in tropical Australia, based on the type species, H. dimorpha. This new species from a cold temperate region: (i) possesses a tubular invagi‐nation in the posterior part of the cell; (ii) produces copious amounts of mucilage in culture; (iii) possesses both motile and non‐motile stages in its life cycle; and (iv) has overlapping discoidal chloroplasts, all of which are diagnostic features of the genus Haramonas. Therefore, it is indisputable that this species belongs to this genus. However, the species from Sylt differs from the type species of the genus in: (i) having a larger cell size; (ii) possessing a larger number of chloroplasts; and (iii) being greenish in color. The ultrastructural study revealed that the structure of the tubular invagi‐nation was the same as that of the type species.  相似文献   

2.
The green amoeboid cells of Chlorarachnion reptans Geitler are completely naked and each contains a central nucleus, several bilobed chloroplasts each with a central projecting pyrenoid enveloped by a capping vesicle, several Golgi bodies, mitochondria with tubular cristae, extensive rough ER, and a distinct layer of peripheral vesicles. Complex extrusome-like organelles occur rarely in both the amoeboid and flagellate stages. The only organelles entering the reticulopodia are mitochondria, but microtubules are also present. The chloroplasts contain chlorophylls a and b, but histochemical tests suggest that the carbohydrate storage product probably is not a starch. The chloroplast lamellae are composed of one to three thylakoids or form deep stacks. A girdle lamella and interlamellar partitions are absent. Each chloroplast is bounded by either four separate membranes, a pair of membranes with vesicular profiles between them, or three membranes; all three arrangements may occur in the same chloroplast. A periplastidal compartment occurs near the base of the pyrenoid where there are always four surrounding membranes. The compartment has a relatively dense matrix and contains ribosome-like particles and small dense spheres; it extends over and into a deep invagination in the pyrenoid where its contents are enclosed in a double-membraned envelope which is penetrated by wide pores. The zoospores are ovoid and each bears a single laterally inserted flagellum which appears to be wrapped helically around the cell body during swimming. The flagellum lies in a groove in the cell surface and bears fine lateral hairs. Neither a second flagellum or vestige of one, nor an eyespot, is present. A single microtubular root and a larger homogeneous root run from the flagellar base parallel to the emerging flagellum, between the nuclear envelope and the plasmalemma. In the simple flagellar transition region, fine filaments connect adjacent axonemal doublets. A detailed comparison of C. reptans with all other algal taxa results in the conclusion that it must be segregated in the new class Chlorarachniophyceae, the only class in the new division Chlorarachniophyta. The possibility that C. reptans evolved from a symbiosis between a colorless amoeboid cell and a chlorophyll b- containing eukaryote is considered, but the possible affinities of the symbiont remain enigmatic. The implications of the unique chloroplast structure of C. reptans for current hypotheses concerning the origin of chloroplasts are discussed.  相似文献   

3.
S. sphagnicola resembles other species of Synura previously described by electron microscopy in most features of structure but differs in possessing pyrenoids and up to five cylindrical stacks of smooth cisternae which occur between the pyrenoids and leucosin vesicles. Each stack is surrounded by a tubular cisterna which bears ribosomes on its distal face but there are no clear permanent connections between this and the chloroplast ER. Other features apparently unique to this species previously known from light microscopy are described. These include the axial position of the chloroplasts; the peripheral position of the leucosin vesicles; and the loose attachment of the scales. The structure of the body scales is described for the first time from sections. The flagellar scales are formed in the swollen edges of the Golgi cisternae and appear to pass to the cell surface in large vesicles.  相似文献   

4.
A new flagellate of the Raphidophyceae, Chlorinimonas sublosa gen. et sp. nov., collected from Wakayama Prefecture, Japan is described based on morphological observations, microspectrophotometry of chloroplasts, and phylogenetic analysis of SSU rDNA sequences. The cell was usually elliptical, sometimes spherical, oval or slender, and possessed two subequal heterodynamic flagella emerging from a subapical pit. Greenish yellow discoidal chloroplasts, 15–25 per cell, were situated at the periphery of the cell. The alga is very similar to the genus Heterosigma, but distinct in that there is no invagination of thylakoids into the pyrenoids and no typical girdle lamella in the chloroplast, and the chloroplasts are greenish yellow. Phylogenetic analysis of SSU rDNA revealed that this alga forms a sister clade with the clade of Chattonella and Heterosigma. Based on these results, we propose a new genus Chlorinimonas with Chlorinimonas sublosa as the type species. In addition, this paper is the first report of molecular data covering all genera of the Raphidophyceae. The phylogenetic analysis suggests that the intrusion to freshwater habitat has occurred only once in the Raphidophyceae.  相似文献   

5.
A new species of the Raphidophyceae, Haramonas pauciplastida sp. nov. from Canada is described. The genus Haramonas has been described based on the type species Haramonas dimorpha and currently only two species are known. This new alga belongs to the genus because it possesses a tubular invagination at the posterior end of the cell, producing a large amount of mucilage and generating both motile and non-motile phases in its life cycle. The chloroplast color of H. pauciplastida is yellowish green, and is similar to that of Haramonas viridis Horiguchi et Hoppenrath . However, this alga differs from the other species of the genus in that it possesses fewer chloroplasts, which are rarely overlapping. The ultrastructual study shows differences between these two species in the number of thylakoids in the lamella, the presence of a scattered pyrenoid matrix, and the position of the plastoglobuli. The phylogenetic analyses of the small subunit ribosomal RNA gene from the Haramonas species reveal that three species can be distinguished genetically from each other and they form a robust clade in the Raphidophyceae. This result supports the notion that the characteristic features of Haramonas are synapomorphies. This is the first report of molecular data from the Haramonas species.  相似文献   

6.
A new species of benthic marine dinoflagellate, Pyramidodinium spinulosum Horiguchi, Moriya, Pinto & Terada is described from the deep (36 m) seafloor off Mageshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The life cycle of the dinoflagellate consists of a dominant, attached, dome‐shaped, vegetative form and short‐lasting, motile cell. Asexual reproduction takes place by the formation of two motile cells within each non‐motile cell. The released motile cells swim only for a short period and transform directly into the dome‐shaped vegetative form. The duration of the cell cycle varies and can be extremely long, ranging 5–38 days under culture conditions. The non‐motile cell is enclosed by a cell wall and its surface is covered with many (80 – 130) spines of various length. The dinoflagellate is photosynthetic and contains many (more than 50) discoidal chloroplasts. Phylogenetic analysis reveals that the dinoflagellate is closely related to the type species of the genus Pyramidodinium, P. atrofuscum which also possesses a dominant, attached, non‐motile form. However, P. spinulosum can be clearly distinguished from P. atrofuscum by the cell shape (dome‐shaped vs. pyramid‐shaped) and surface ornamentation (spines vs. wart‐like processes) of the non‐motile form. Based on these morphological differences together with molecular evidence, it was concluded that this organism from a deep water sand sample should be described as a second species of the genus Pyramidodinium, P. spinulosum.  相似文献   

7.
A flattened discoid flagellate collected from the Seto Inland Sea, Japan, has been examined by light and electron microscopy. This alga agrees well withClisthodiscus luteus Carter. It has two heterodynamic flagella emerging from a furrow on the upward side of the cell that contains six to 13 yellow-green parietal chloroplasts. It does not rotate but smoothly glide while swimming. The cell has a thin periplast lying between the plasmalemma and chloroplasts. Neither lipid bodies nor mucocysts are seen in the periplast. The pyrenoid matrix being free from thylakoids is penetrated by several cytoplasmic canals from various directions. There are no vesicles of periplastidal network in the narrow space between chloroplast envelope and chloroplast ER. The ultrastructural features ofO. luteus are unique, sharing certain characters with the raphidophycean algae but others withPseudopedinella pyriformis, a unique member of the Chrysophyceae.  相似文献   

8.
A new marine sand‐dwelling coccoid dinoflagellate Pyramidodinium atrofuscum Horiguchi et Sukigara gen. et sp. nov. is described from Jellyfish Lake, Republic of Palau. The dinoflagellate alternates a non‐motile vegetative stage with a motile gymnodinioid stage within its life cycle. The non‐motile stage is dominant in the life cycle and the dinoflagellate reproduces itself by means of the production of two motile cells. The released motile cell swims only for a short period and is directly transformed into the non‐motile cell. The non‐motile cell is sessile, pyramidal in shape, with a single longitudinal ridge and a double transverse ridge. The surface of the cell wall is covered with many processes. The motile cell has a Gymnodinium‐like morphology, but no apical groove is present. An ultrastructural study revealed that the dinoflagellate possesses typical dinoflagellate organelles. Based on the unique morphology of the vegetative non‐motile stage, we propose a new genus Pyramidodinium for this dinoflagellate, with the type species Pyramidodinium atrofuscum Horiguchi et Sukigara, gen. et sp. nov.  相似文献   

9.
A new species of Tovellia, T. aveirensis, is described on the basis of light (LM) and scanning electron microscopy (SEM) of motile cells and resting cysts, complemented with transmission electron microscopy (TEM) of flagellate cells and phylogenetic analysis of partial sequences of the large subunit ribosomal rRNA gene. Both vegetative cells and several stages of a life cycle involving sexual reproduction and the production of resting cysts were examined in cultures established from a tank in the University of Aveiro campus. Vegetative cells were round and little compressed dorsoventrally; planozygotes were longer and had a proportionally larger epicone. Chloroplast lobes were shown by TEM to radiate from a central, branched pyrenoid, although this was difficult to ascertain in LM. The amphiesma of flagellate cells had mainly 5 or 6-sided vesicles with thin plates, arranged in 5–7 latitudinal series on the epicone, 3–5 on the hypocone. The cingulum had 2 rows of plates, the posterior row extending into the hypocone and crossed by a series of small projecting knobs along the lower edge of the cingulum. A line of narrow amphiesmal plates extended over the cell apex, from near the cingulum on the ventral side to the middle of the dorsal side of the epicone. Eight or 9 narrow amphiesmal plates lined each side of this apical line of plates (ALP). Resting cysts differed from any described before in having numerous long, tapering spines with branched tips distributed over most of the surface. Most mature cysts showed an equatorial constriction. Neither cysts nor motile cells were seen to accumulate red cytoplasmic bodies in any stage of the cultures. The phylogenetic analysis placed, with high statistical support, the new species within the genus Tovellia; it formed a clade, with moderate support, with T. sanguinea, a species notable for its reddening cells.  相似文献   

10.
S. Hunt 《Tissue & cell》1981,13(2):283-297
Fine structure of intestinal muscle in the gastropod Buccinum undatum is described. Myofibrillar organization is typical of non-pseudostriated molluscan muscles. The dense body system is poorly developed but there are extensive attachment plaques. The sarcolemma is elaborately modified. Deep infoldings of the membrane give the cells an irregular outline. Such infoldings enclose extracellular matrix and are associated with attachment plaques. Arising from these and from the general sarcolemma are numerous tubular membranous invaginations ending blindly at varying depth in the sarcoplasm. These structures have a helical coat of particles on the cytoplasmic face. Associated with both types of invagination are subsarcolemmal vesicles. The possibility that the tubular invaginations are analogues of vertebrate smooth muscle caveolae or striated muscle T-tubules and that the vesicles are the corresponding sarcoplasmic reticulum is discussed. The occurrence of such structures in molluscan muscle and elsewhere is reviewed.  相似文献   

11.
Summary Two new nitrite oxidizing bacteria for which the names Nitrococcus mobilis and Nitrospina gracilis are proposed were isolated from the marine environment. Nitrococcus mobilis was cultured from South Pacific waters and it is a large motile coccus with unique tubular cytomembranes. Nitrospina gracilis was isolated from South Atlantic waters and it is a long slender rod which lacks an extensive cytomembrane system. Both are obligate marine organisms and both are obligate chemoautotrophs. The fine structure of these organisms is detailed.Contribution No. 2631 from the Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.  相似文献   

12.
A new sand‐dwelling dinoflagellate from Palau, Galeidinium rugatum Tamura et Horiguchi gen. et sp. nov., is described. The life cycle of this new alga consists of a dominant nonmotile phase and a brief motile phase. The motile cell transforms itself directly into the nonmotile cell after swimming for a short period, and cell division takes place in the nonmotile phase. The nonmotile cell possesses a dome‐like cell covering, which is wrinkled and equipped with a transverse groove on the surface. The cell has 10–20 chloroplasts and a distinct eyespot. The motile cell is Gymnodinium‐like in shape. The dinoflagellate possesses an endosymbiotic alga to which the chloroplasts belong and which is separated from the host (dinoflagellate) cytoplasm by a unit membrane. The endosymbiont cytoplasm also possesses its own eukaryotic nucleus and mitochondria. The eyespot is surrounded by triple membranes and is located in the host cytoplasm. Photosynthetic pigment analysis, using HPLC, revealed that G. rugatum possesses fucoxanthin as the principal accessory pigment instead of peridinin. The rbcL tree showed that G. rugatum is monophyletic with Durinskia baltica (Levander) Carty et Cox and Kryptoperidinium foliaceum (Stein) Lindemann and that this clade is closely related to the pennate diatom, Cylindrotheca sp. The endosymbiont of G. rugatum is therefore shown to be a diatom. Phylogenetic analysis based on small subunit rDNA sequences demonstrated that G. rugatum, D. baltica, and K. foliaceum, all of which are known to harbor an endosymbiont of diatom origin, are closely related.  相似文献   

13.
Ciliophrys marina is a small marine helioflagellate, with a central nucleus, which is capable of reversibly transforming from a rapidly swimming flagellate cell with no axopodia to the structure of a heliozoan with a flagellum that beats only a few times a minute. When in the flagellate form, the flagellum acts as a tractellum due to the tubular mastigonemes found along its length. When the rapidly swimming flagellate strikes a piece of debris, the flagellum goes through a very characteristic shock-induced avoidance reaction. Similarly, when a mechanical shock is delivered to the cell in its heliozoan form, the axopodia are contracted in less than 20 msec. Both reactions are inhibited in low calcium seawater. Transformation from the heliozoan to the flagellate form is accomplished by slow retraction and absorbance of the axopodia and activation of the flagellum. Ultrastructurally, each axopodium is found to contain three microtubules which attach to the outer nuclear membrane of the central nucleus at sites that this study characterizes by electron microscopy of thin sections and freeze fracture preparations. The mitochondria have tubular cristae, each containing an intracristal filament. Finally, a taxonomic review of the helioflagellates is presented, and it is suggested that C. marina is derived from the chrysomonads. An argument is also made for classifying C. marina with the heliozoan order Actinophryida, as a recently published classification of the protozoa does.  相似文献   

14.
Summary The ultrastructure and development of the amphiesma of the dinoflagellateGlenodinium foliaceum was studied using conventional electron microscopy and immunocytochemistry. Ecdysis (shedding of the flagella, the outer two membranes of the cell, and the thecal plates) was induced by centrifugation. The cells were resuspended and the thickening of the pellicle and the development of the new thecal vesicles and plates was studied over a 9 h period. After ecdysis, the thin pellicle which underlay the thecal plates in the motile cells thickens to form a complex structure of four distinct layers: an outer layer of randomly oriented fibrils, a 50 nm layer of fibrils oriented perpendicular to the dense layer, the dense layer which has a trilaminate structure, and a wide inner homogeneous layer. The new thecal vesicles form in these pelliculate cells by the migration of electron translucent amphisomal vesicles over the layer of peripheral microtubules to a position directly under the plasmalemma. The thecal vesicles then flatten and elongate. A discontinuous pellicular layer appears within them. Subsequently, the thecal vesicles widen and are filled with a fibrillogranular substance overlying the pelliculate layer. The thecal plates form on top of this fibrillogranular material. By this time, most cells have escaped from the pellicle and are motile. At first, the outer thecal vesicle membrane is continuous with the inner thecal vesicle membrane at the sutures, but when this connection is broken, the dense pelliculate layers become continuous across the suture as does the inner thecal vesicle membrane. At ecdysis, this membrane becomes the new plasmalemma of the cell. Cells at each stage of pellicle thickening and thecal development were labelled with a polydonal antiserum raised against the 70 kDa epiplasmic protein ofEuglena acus. This antiserum labelled both the thecal plates of the motile cells and the inner homogeneous layer of the pellicle of ecdysed non-motile cells. No other amphiesmal structure was labelled, nor was any intracellular compartment.Abbreviations PBS phosphate-buffered saline - PIPES piperazine-N,N-bis[2-ethane sulfonic acid]  相似文献   

15.
The organization and development of cell coverings in two alternate phases of the life cycle in a marine dinoflagellate, Scrippsiella hexapraecingula Horiguchi et Chihara, were investigated by thin sectioning and freeze‐fracture electron microscopy. In one of these phases, the motile phase, cells have an outermost plasma membrane that is lined with flattened amphiesmal vesicles. Groups of microtubules lie beneath these vesicles. In mature motile cells, thecal plates are completely enclosed in individual amphiesmal vesicles. After settling, the cells enter the second, non‐motile phase. Here, ecdysis occurs, resulting in several steps including formation of the first pellicle layer (PI), fusion of the inner amphiesmal vesicle membranes to form the new plasma membrane, deposition of the second pellicle layer (PM) under PI, and the appearance and fusion of juvenile amphiesmal vesicles to form new territories, which eventually give rise to new thecal plates in the next motile phase. Thus, the pattern in which thecal plates are arranged in motile cells is determined at the time when the amphiesmal vesicles develop into non‐motile cells.  相似文献   

16.
ABSTRACT. A new heterotrophic flagellate has been discovered from sites in Maryland, Michigan and Wyoming. The flagellate resides within a lorica constructed of a meshwork of intertwined fibrils with the outer surface invested with nail-shaped spines. The organism "reclines" within the lorica with its ventral aspect directed upward, and has two heterodynamic flagella, neither of which bears mastigonemes. One flagellum is directed upward and the other is arched over the ventral aspect of the body. Ingestion of bacteria takes place at the left posterior half of the cell. The organism is anchored to the lorica on the right posterior side by a series of regularly spaced cytoplasmic bridges and at the left anterior of the cell by a cytoplasmic appendage similar to the "languette cytoplasmique" found in some bicosoecids. The right side of the cell is raised into a flattened lip with the outer margin reinforced by a ribbon of microtubules. The new flagellate has mitochondria with tubular cristae and lacks a Golgi. A new genus is created to accommodate both the new flagellate described herein and Histiona campanula Penard. A new family is proposed to include the new genus and Histiona.  相似文献   

17.
Similarly to Helicobacter pylori but unlike Vibrio cholerae O1/O139, Campylobacter jejuni is non‐motile at 20°C but highly motile at ≥37°C. The bacterium C. jejuni has one of the highest swimming speeds reported (>100 μm/s), especially at 42°C. Straight and spiral bacterial shapes share the same motility. C. jejuni has a unique structure in the flagellate polar region, which is characterized by a cup‐like structure (beneath the inner membrane), a funnel shape (opening onto the polar surface) and less dense space (cytoplasm). Other Campylobacter species (coli, fetus, and lari) have similar motility and flagellate polar structures, albeit with slight differences. This is especially true for Campylobacter fetus, which has a flagellum only at one pole and a cup‐like structure composed of two membranes.  相似文献   

18.
Pinguiochrysis pyriformis gen. et sp. nov. is a brown, naked, non‐motile, marine picoplankton. A culture was established from a surface sample collected in 1991 from the tropical Western Pacific Ocean. Typical cells of P. pyriformis are distinctively pear‐shaped and have one ovoid chloroplast; these two features distinguish this species from the other picophytoplankton species. However, the pyriform morphology is not consistent and cells frequently change to a subspherical shape. The chloroplast and mitochondrion ultrastructure confirm that this species belongs to the photosynthetic stramenopiles (chromophytes). Additional distinctive ultrastructural characteristics of P. pyriformis include (i) a chloroplast envelope forming a tubular invagination that penetrates into the pyrenoid; (ii) thylakoid lamellae consisting of more than three layers in some cells; (iii) the lack of basal bodies and centrioles; and (iv) the lack of scales or other extracellular structures. Based on the morphological features, this picoplanktonic species was described as a new species and placed in the Pinguiophyceae on the basis of the molecular phylogenetic analysis and biochemical data published elsewhere.  相似文献   

19.
A new species of the dinoflagellate genus Cachonina, C. illdefina sp. nov., was isolated from a red tide off El Capitan State Park, Santa Barbara County, California, in October 1973. The organism is light yellowgreen in color with deeply incised girdle and sulcal grooves. Electron microscopy of the organism, revealed a typical dinokaryotic nucleus. The chloroplasts of the organism are connected, and often contain microtubule-like elements, 25 nm diam. The pyrenoids are characterized as excluding chloroplast thylakoids and ribosomes, although containing an amorphous matrix and numerous tubular invaginations from the cytoplasm. The pyrenoids become detached from the chloroplasts and degenerate into small vesicles. C. illdefina is not bioluminescent.  相似文献   

20.
ABSTRACT. A trichomonad flagellate, Tritrichomonas mobilensis n. sp., is described from the large intestine of the squirrel monkey, Saimiri boliviensis boliviensis. The organism has a lanceolate body 7–10.5 μm in length; a well developed undulating membrane; a stout, tubular axostyle with periaxostylar rings that terminate in a cone-shaped segment projecting from the posterior end of the cell; and a moderately wide costa. The anterior flagella are about as long as the body, and the recurrent flagellum is of the acroneme type. All its characteristics suggest that the new species belongs in the Tritrichomonas augusta type of the subfamily Tritrichomonadinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号