首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetic acid tolerance compared with ethanol tolerance of Drosophila simulans and six Drosophila melanogaster strains shows a curvilinear relation with apparent asymptotic hyperbolic profile. The upper limit of acetic acid tolerance is lower than that for ethanol. We compared strains which had pairwise identical alcohol dehydrogenase (ADH) coding regions but different genetic backgrounds. A positive regression existed for ethanol tolerance on ADH activity. Adh-null mutants with very low ethanol tolerances had appreciable acetic acid tolerances and as a consequence did not fit the curve. ADH-F and ADH-S strains selected for high ethanol tolerances had the ability to tolerate high ethanol concentrations even after selection had been relaxed for several years. These selected lines tolerated higher acetic acid concentrations than the non-selected original strains. We propose that intake of high concentrations of ethanol and oxidation into acetic acid induces esterification of ethanol and acetic acid into ethylacetate. This cannot take place after the intake of acetic acid only, which also gives a lower energy yield.  相似文献   

2.
In vitro alcohol dehydrogenase (ADH) activity was measured in adults of species belonging to Drosophila and to the related genus Zaprionus. Data were analyzed according to the known breeding sites and the level of ethanol tolerance of these species. Alcohol dehydrogenase activity was assayed with both ethanol (E) and isopropanol (I). Our results show a very broad range of activities among the 71 species investigated, the ratio of the highest value observed (D. melanogaster) to the lowest (D. pruinosa) being 65:1. A general positive correlation was found between the level of ADH activity and the capacity to detoxify ethanol. Nevertheless, many species show exceptions to this rule. Contrary to a logical expectation, adaptation to high alcoholic resources, which has been a recurrent evolutionary event, was not mediated by a more efficient use of ethanol, that is, an increase of the E/I ratio. This ratio seems to be quite variable according to the phylogeny and is especially low in the subgenus Sophophora as well as in Zaprionus. Alcohol tolerance clearly is related to the larval habitat of the species and shows that adaptation to alcoholic resources has been a major evolutionary challenge in drosophilids. This adaptation is not related to phylogeny, having occurred independently several times during the evolution of the group. Finally, it should be borne in mind that, besides metabolization and detoxification, other physiological processes such as nervous-system tolerance or ethanol excretion may be involved in ethanol tolerance, and such functions also should be investigated. Environmental ethanol, which is certainly a major ecological parameter for many drosophilids, has selected a diversity of physiological adaptations, all related to the Adh locus, but presumably much more complicated than was previously believed.  相似文献   

3.
Genes/QTLs affecting flood tolerance in rice   总被引:8,自引:1,他引:7  
The adaptation of deepwater rice to flooding is attributed to two mechanisms, submergence tolerance and plant elongation. Using a QTL mapping study with replicated phenotyping under two contrasting (water qualities) submergence treatments and AFLP markers, we were able to identify several genes/QTLs that control plant elongation and submergence tolerance in a recombinant inbred rice population. Our results indicate that segregation of rice plants in their responses to different flooding stress conditions is largely due to the differential expression of a few key elongation and submergence tolerance genes. The most important gene was QIne1 mapped near sd-1 on chromosome 1. The Jalmagna (the deepwater parent) allele at this locus had a very large effect on internal elongation and contributed significantly to submergence tolerance under flooding. The second locus was a major gene, sub1(t), mapped to chromosome 9, which contributed to submergence tolerance only. The third one was a QTL, QIne4, mapped to chromosome 4. The IR74 (non-elongating parent) allele at this locus had a large effect for internal elongation. An additional locus that interacted strongly with both QIne1 and QIne4 appeared near RG403 on chromosome 5, suggesting a complex epistatic relationship among the three loci. Several QTLs with relatively small effects on plant elongation and submergence tolerance were also identified. The genetic aspects of these flooding tolerance QTLs with respect to patterns of differential expression of elongation and submergence tolerance genes under flooding are discussed. Received: 13 December 1999 / Accepted: 14 March 2000<@head-com-p1a.lf>Communicated by G. Wenzel  相似文献   

4.
Quantitative trait loci (QTL) analysis of aluminium (Al) tolerance was performed using Ler/Cvi recombinant inbred (RI) lines of Arabidopsis thaliana. Relative root length (RRL) (root length with 4 µm Al/root length with no Al at pH 5.0) on day 5 was used as the Al tolerance index for QTL analysis. Al tolerance judged by RRL was well correlated to tolerance judged by other indexes, including accumulation of callose, reactive oxygen species in the root apex and growth performance on acid soil containing a large amount of exchangeable Al. Using data sets with an hb2 of 0.91, two QTLs were detected at the top of chromosome 1 and bottom of chromosome 3. These QTLs explained 40 and 16% of the phenotypic variation of Al tolerance, respectively, and the positive effect of the Cvi allele. The QTL on chromosome 1 overlapped with a major QTL in another recombinant inbred population, and is possibly related to malate excretion. A complete pair-wise search revealed 11 sets of epistatic interacting loci pairs, which accounted for the transgressive segregation among the RI population. Several epistatic interactions shared the same chromosomal region, indicating the possible involvement of regulatory proteins in Al tolerance in Arabidopsis.  相似文献   

5.
 Phosphorus (P) deficiency of soils is a major yield-limiting factor in rice production. Increasing the P-deficiency tolerance of rice cultivars may represent a more cost-effective solution than relying on fertilizer application. The objective of this study was to identify putative QTLs for P-deficiency tolerance in rice, using 98 backcross inbred lines derived from a japonica×indica cross and genotyped at 245 RFLP marker loci. Lines were grown on P-deficient soil and P uptake, internal P-use efficiency, dry weight, and tiller number were determined. Three QTLs were identified for dry weight and four QTLs for P uptake, together explaining 45.4% and 54.5% of the variation for the respective traits. Peaks for both traits were in good agreement which was to be expected considering the tight correlation of r=0.96 between dry weight and P uptake. For both traits the QTL linked to marker C443 on chromosome 12 had a major effect. Two of the three QTLs detected for internal P-use efficiency, including the major one on chromosome 12, coincided with QTLs for P uptake; however, whereas indica alleles increased P uptake they reduced P-use efficiency. We concluded that this was not due to the tight linkage of two genes in repulsion but rather due to an indirect effect of P uptake on P-use efficiency. Most lines with high use efficiency were characterized by very low P uptake and dry weight and apparently experienced extreme P-deficiency stress. Their higher P-use efficiency was thus the result of highly sub-optimal tissue-P concentrations and did not represent a positive adaptation to low P availability. The number of tillers produced under P deficiency is viewed as an indirect indicator of P-deficiency tolerance in rice. In addition to the major QTL on chromosome 12 already identified for all other traits, two QTLs on chromosome 4 and 12 were identified for tiller number. Their position, however, coincided with QTLs for tiller number reported elsewhere under P-sufficient conditions and therefore appear to be not related to P-deficiency tolerance. In this study P-deficiency tolerance was mainly caused by differences in P uptake and not in P-use efficiency. Using a trait indirectly related to P-deficiency tolerance such as tiller number, we detected a major QTL but none of the minor QTLs detected for P uptake or dry weight. Received: 9 February 1998 / Accepted: 29 April 1998  相似文献   

6.
Fourteen wild-type baking strains of Saccharomyces cerevisiae were grown in batch culture to true stationary phase (exogenous carbon source exhausted) and tested for their trehalose content and their tolerance to heat (52°C for 4.5 min), ethanol (20% v/v for 30 min), H2O2 (0.3 M for 60 min), rapid freezing (−196°C for 20 min, cooling rate 200°C min−1), slow freezing (−20°C for 24 h, cooling rate 3°C min−1), salt (growth in 1.5 M NaCl agar) or acetic acid (growth in 0.4% w/v acetic acid agar) stresses. Stress tolerance among the strains was highly variable and up to 1000-fold differences existed between strains for some types of stress. Compared with previously published reports, all strains were tolerant to H2O2 stress. Correlation analysis of stress tolerance results demonstrated relationships between tolerance to H2O2 and tolerance to all stresses except ethanol. This may imply that oxidative processes are associated with a wide variety of cellular stresses and also indicate that the general robustness associated with industrial yeast may be a result of their oxidative stress tolerance. In addition, H2O2 tolerance might be a suitable marker for the general assessment of stress tolerance in yeast strains. Trehalose content failed to correlate with tolerance to any stress except acetic acid. This may indicate that the contribution of trehalose to tolerance to other stresses is either small or inconsistent and that trehalose may not be used as a general predictor of stress tolerance in true stationary phase yeast. Received 10 October 1995/ Accepted in revised form 10 September 1996  相似文献   

7.
The germination responsiveness of an F2 population derived from the cross Lycopersicon esculentum (UCT5) x L. pennellii (LA716) was evaluated for salt tolerance at two stress levels, 150 mM NaCl + 15 mM CaCl2 and 200 mM NaCl + 20 mM CaCl2. Individuals were selected at both tails of the response distribution. The salt-tolerant and salt-sensitive individuals were genotyped at 16 isozyme loci located on 9 of the 12 tomato chromosomes. In addition, an unselected (control) F2 population was genotyped at the same marker loci, and gene frequencies were estimated in both selected and unselected populations. Trait-based marker analysis was effective in identifying genomic locations (quantitative trait loci, QTLs) affecting salt tolerance in the tomato. Three genomic locations marked by Est-3 on chromosome 1, Prx-7 on chromosome 3, and 6Pgdh-2 and Pgi-1 on chromosome 12 showed significant positive effects, while 2 locations associated with Got-2 on chromosome 7 and Aps-2 on chromosome 8 showed significant negative effects. The identification of genomic locations with both positive and negative effects on this trait suggests the likelihood of recovering transgressive segregants in progeny derived from these parental lines. Similar genomic locations were identified when selection was made either for salt tolerance or salt sensitivity and at both salt-stress treatments. Comparable results were obtained in uni- and bidirectional selection experiments. However, when marker allele gene frequencies in a control population are unknown, bidirectional selection may be more efficient than unidirectional selection in identifying marker-QTL associations. Results from this study are discussed in relationship to the use of molecular markers in developing salt-tolerant tomatoes.  相似文献   

8.
Norin-PL8 is a cold-tolerant variety of rice (Oryza sativa L.) that was developed by introgressing chromosomal segments from a cold-tolerant javanica variety, Silewah. We previously detected quantitative trait loci (QTLs) for cold tolerance of Norin-PL8 in the introgressions on chromosomes 3 and 4. We provide fine mapping of the QTLs on chromosome 4 and the association between the QTLs and anther length, which has been reported to be a major component of cold tolerance. Interval mapping using a segregating population derived from an advanced backcross progeny indicated that a QTL for cold tolerance is probably located from the center to the proximal end of the introgression. For fine mapping, we developed a set of near-isogenic lines (NILs) from recombinants in the segregating population. Comparison of cold tolerance between the NILs indicated that either the proximal end or the center of the introgression is necessary for cold tolerance. From these results, we concluded that there are at least two QTLs for cold tolerance, tentatively designated as Ctb-1 and Ctb-2, in the introgression on chromosome 4. The map distance between Ctb-1 and Ctb-2 is estimated to be 4.7–17.2 cM. In order to investigate the mechanism underlying cold tolerance by the QTLs, we compared anther lengths of the NILs. The results indicate that both Ctb-1 and Ctb-2 are associated with anther length. Received: 17 July 2000 / Accepted: 1 February 2001  相似文献   

9.
In this study we tested whether rhizosphere microorganisms can increase drought tolerance to plants growing under water-limitation conditions. Three indigenous bacterial strains isolated from droughted soil and identified as Pseudomonas putida, Pseudomonas sp., and Bacillus megaterium were able to stimulate plant growth under dry conditions. When the bacteria were grown in axenic culture at increasing osmotic stress caused by polyethylene glycol (PEG) levels (from 0 to 60%) they showed osmotic tolerance and only Pseudomonas sp. decreased indol acetic acid (IAA) production concomitantly with an increase of osmotic stress (PEG) in the medium. P. putida and B. megaterium exhibited the highest osmotic tolerance and both strains also showed increased proline content, involved in osmotic cellular adaptation, as much as increased osmotic stress caused by NaCl supply. These bacteria seem to have developed mechanisms to cope with drought stress. The increase in IAA production by P. putida and B. megaterium at a PEG concentration of 60% is an indication of bacterial resistance to drought. Their inoculation increased shoot and root biomass and water content under drought conditions. Bacterial IAA production under stressed conditions may explain their effectiveness in promoting plant growth and shoot water content increasing plant drought tolerance. B. megaterium was the most efficient bacteria under drought (in successive harvests) either applied alone or associated with the autochthonous arbuscular mycorrhizal fungi Glomus coronatum, Glomus constrictum or Glomus claroideum. B. megaterium colonized the rhizosphere and endorhizosphere zone. We can say, therefore, that microbial activities of adapted strains represent a positive effect on plant development under drought conditions.  相似文献   

10.
To investigate the genetic background for aluminum (Al) tolerance in rice, a recombinant inbred (RI) population, derived from a cross between an Al-sensitive lowland indica rice variety IR1552 and an Al-tolerant upland japonica rice variety Azucena, was used in culture solution. A molecular linkage map, together with 104 amplified fragment length polymorphism (AFLP) markers and 103 restriction fragment length polymorphism (RFLP) markers, was constructed to map quantitative trait loci (QTLs) and epistatic loci for Al tolerance based on the segregation for relative root length (RRL) in the population. RRL was measured after stress for 2 and 4 weeks at a concentration of 1mM of Al3+ and a control with a pH 4.0, respectively. Two QTLs were detected at both the 2nd and the 4th weeks on chromosomes 1 and 12 from unconditional mapping, while the QTL on chromosome 1 was only detected at the 2nd stress week from conditional mapping. The effect of the QTL on chromosome 12 was increased with an increase of the stress period from 2 to 4 weeks. The QTL on chromosome 1 was expressed only at the earlier stress, but its contribution to tolerance was prolonged during growth. At least one different QTL was detected at the different stress periods. Mean comparisons between marker genotypic classes indicated that the positive alleles at the QTLs were from the Al-tolerant upland rice Azucena. An important heterozygous non-allelic interaction on Al tolerance was found. The results indicated that tolerance in the younger seedlings was predominantly controlled by an additive effect, while an epistatic effect was more important to the tolerance in older seedlings; additionally the detected QTLs may be multiple allelic loci for Al tolerance and phosphorus-uptake efficiency, or for Al and Fe2+ tolerance. Received: 29 July 1999 / Accepted: 13 October 1999  相似文献   

11.
Aims: Acid and heat tolerance of 17 persistent and 23 nonpersistent Listeria monocytogenes strains, recovered from three meat‐processing plants, were investigated. Methods and Results: The isolates were genotyped by pulsed‐field gel electrophoresis and categorized into persistent strains according to the frequency of the strain and duration of the contamination. The persistent and nonpersistent strains were challenged to acidic conditions (pH 2·4 for 2 h, 1 mol l?1 HCl were used to acidify the suspension) and to heat (55°C for 40 min) to receive a reduction in cell count. Listeria monocytogenes strains showed large variation in acid tolerance (over 6 log units) and in heat tolerance (3 log units). The persistent strains showed higher tolerance to acidic conditions than the nonpersistent strains (Student’s t‐test, P = 0·02), but significant differences in heat tolerance between persistent and nonpersistent strains were not observed. Conclusions: The results indicate that acid tolerance may have an effect on the persistence of L. monocytogenes contamination. Significance and Impact of the Study: This study highlights the fact that there are great differences in acid and heat tolerances between L. monocytogenes strains, and the preventive measures should be designed to be effective against the most tolerant strains.  相似文献   

12.
Mapping QTLs for Phosphorus-Deficiency Tolerance at Wheat Seedling Stage   总被引:13,自引:0,他引:13  
Soil phosphorus (P) deficiency is one of the major limiting factors to crop production throughout the world. It is an important strategy to breed varieties with improved P-deficiency tolerance for sustainable agriculture. The objective of this study was to map QTLs for P-deficiency tolerance in wheat, and develop molecular marker assisted selection in breeding wheat with improved P-deficiency tolerance. A doubled haploid (DH) population, consisting of 92 DH lines (DHLs) derived from P-deficiency tolerant wheat variety Lovrin 10 and P-deficiency sensitive variety Chinese Spring, was developed for mapping QTLs for P-deficiency tolerance. A genetic linkage map consisting of 34 linkage groups was constructed using 253 SSR markers. Shoot dry weight (SDW), tiller number (TN), shoot P uptake (SPU), and shoot P utilization efficiency (PUE) were investigated at seedling stage under P deficiency (−P) and sufficiency (+P) condition in two pot trials in 2002 and 2003, respectively. All traits segregated continuously in the population under either −P or +P condition. Significant positive correlations were found in between TN, SDW and SPU, whereas significant negative correlations were observed between PUE and SPU and between PUE and TN. Twenty and 19 QTLs were detected under −P and +P condition, respectively. The 39 QTLs were distributed on 21 chromosomal regions. There were three clusters of QTLs, which were associated with Xgwm25l (on chromosomes 4B), Xgwm271.2 (on chromosome 5A), and Xgwm121 (on chromosome 5D), respectively. Compared to the DHLs with all Chinese Spring alleles at the three loci, those with all Lovrin 10 alleles had, on average, much higher SPU, SDW and TN under −P condition in both trials, suggesting the importance of the three loci in controlling P-deficiency tolerance. It was interesting to find that two of the above three loci were closely linked with vernalization requirement genes VRN-A1 (on chromosome 5A) and VRN-D1 (on chromosome 5D). Potential implication of the linkage between P-deficiency tolerance and VRN genes was discussed.  相似文献   

13.
Summary Eight recently collected Australasian populations of D. melanogaster were each divided into eight selection lines. Two of these lines from each population were maintained on one of four types of selection media: standard food supplemented with 0%, 3%, 6% and 9% ethanol. After 30 generations the selection lines were tested for tolerance to 9% ethanol medium and after another 20 generations adults were tested for tolerance to concentrated ethanol fumes. Significant differences in tolerance were found among lines selected on different media which were consistent across the eight populations. On the 9% test media, the 6% and 9% selection lines, as compared with the control lines selected on 0% ethanol, were more likely to survive as pre-adults or adults, faster to develop as preadults, and heavier and more productive as adults. However, the tolerance of the 3% lines to the 9% test media was less than that of the 0% control lines in preadult and adult survival, intermediate between that of the 0% and the 6% and 9% lines in productivities, and apparently superior to the 6% and 9% lines in development times and adult weights. The 3%, 6% and 9% lines showed similar tolerances to the ethanol vapour. Previous work showed that 3% ethanol can be a metabolic benefit to D. melanogaster but 6% and 9% are metabolic costs. The present results suggest that the phenotype selected on 3% to obtain a metabolic benefit differs in many respects from that selected on 6% and 9% to minimise their detrimental effects.  相似文献   

14.
Rye (Secale cereale L.) is considered to be the most aluminum (Al)-tolerant species among the Triticeae. It has been suggested that aluminum tolerance in rye is controlled by three major genes (Alt genes) located on rye chromosome arms 3RL, 4RL, and 6RS, respectively. Screening of an F6 rye recombinant inbred line (RIL) population derived from the cross between an Al-tolerant rye (M39A-1–6) and an Al-sensitive rye (M77A-1) showed that a single gene controls aluminum tolerance in the population analyzed. In order to identify molecular markers tightly linked to the gene, we used a combination of amplified fragment length polymorphism (AFLP) and bulked segregant analysis techniques to evaluate the F6 rye RIL population. We analyzed approximately 22,500 selectively amplified DNA fragments using 204 primer combinations and identified three AFLP markers tightly linked to the Alt gene. Two of these markers flanked the Alt locus at distance of 0.4 and 0.7 cM. Chromosomal localization using cloned AFLP and a restriction fragment length polymorphism (RFLP) marker indicated that the gene was on the long arm of rye chromosome 4R. The RFLP marker (BCD1230) co-segregated with the Alt gene. Since the gene is on chromosome 4R, the gene was designated as Alt3. These markers are being used as a starting point in the construction of a high resolution map of the Alt3 region in rye. Received: 29 March 2000 / Accepted: 9 July 2001  相似文献   

15.
Bert  V.  Meerts  P.  Saumitou-Laprade  P.  Salis  P.  Gruber  W.  Verbruggen  N. 《Plant and Soil》2003,249(1):9-18
The genetic basis of Cd tolerance and hyperaccumulation was investigated in Arabidopsis halleri. The study was conducted in hydroponic culture with a backcross progeny, derived from a cross between A. halleri and a non-tolerant and non-accumulating related species Arabidopsis lyrata ssp. petraea, as well as with the parents of the backcross. The backcross progeny segregates for both cadmium (Cd) tolerance and accumulation. The results support that (i) Cd tolerance may be governed by more than one major gene, (ii) Cd tolerance and Cd accumulation are independent characters, (iii) Cd and Zn tolerances co-segregate suggesting that they are under pleiotropic genetic control, at least to a certain degree, (iv) the same result was obtained for Cd and Zn accumulation.  相似文献   

16.
Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic‐acid‐tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo­lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin‐treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744–753. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

17.
The present study was performed to examine the effects of acute ethanol exposure on N-methyl-D-aspartate (NMDA)-induced responses and the development of acute tolerance in rat rostral ventrolateral medulla (RVLM) in vivo and in vitro. Repeated microinjections of NMDA (0.14 nmol) into the RVLM every 30 min caused reproducible increases in mean arterial pressure in urethane-anesthetized rats weighing 325–350 g. Intravenous injections of ethanol (0.16 or 0.32 g, 1 ml) inhibited NMDA-induced pressor effects in a blood-concentration-dependent and reversible manner. The inhibitory effect of ethanol was reduced over time during continuous infusion of ethanol or on the second injection 3.5 h after prior injection of a higher dose of ethanol (0.32 g). A high dose of ethanol (0.32 g) had no significant effects on-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,-aminobutyric acid and glycine-induced changes in blood pressure. In vitro studies showed that ethanol (10–100 mM) dose-dependently inhibited inward currents elicited by pressure ejection of NMDA (10 mM) in RVLM neurons of neonatal brainstem slice preparations. When the superfusion time of ethanol (100 mM) was increased to 50 min, its inhibitory effect decreased gradually after 30–40 min in 60% of RVLM neurons examined. These data suggested that ethanol inhibition and subsequent tolerance development is associated with changed sensitivity to NMDA in the RVLM, which may play important roles in the ethanol regulation of cardiovascular function.  相似文献   

18.
Summary The internal pH of Saccharomyces cerevisiae IGC 3507 III (a respiratory-deficient mutant) was measured by the distribution of [14C]propionic acid, when the yeast was fermenting glucose at pH 3.5, 4.5 and 5.5 in the presence of several concentrations of acetic acid and ethanol. Good correlation was obtained between fermentation rates and internal pH. For all external pH values tested, the internal pH was 7.0–7.2 in the absence of inhibitors. The addition of acetic acid and/or ethanol resulted in a decrease of fermentation rate together with a drop in internal pH. Internal pH did not depend on the concentration of total external acetic acid but only on the concentration of the undissociated form of the acid. Ethanol potentiated the effect of acetic acid both with respect to inhibition of fermentation and internal acidification.  相似文献   

19.
Wei P  Li Z  Lin Y  He P  Jiang N 《Biotechnology letters》2007,29(10):1501-1508
An effective, simple, and convenient method to improve yeast’s multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H2O2, and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 × 107 c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l−1) to SC521 at 30°C with 200 g glucose l−1, and was better than the parent strain at 37°C (72.5 g ethanol l−1), with 300 (111 g ethanol l−1) or with 400 (85 g ethanol l−1) g glucose l−1.  相似文献   

20.
To understand mechanisms of cadmium (Cd) tolerance variation associated with root elongation in Arabidopsis thaliana , quantitative trait loci (QTLs) and epistasis were analyzed using relative root length (RRL: % of the root length in +Cd to −Cd) as a tolerant index. Using the composite interval mapping method, three major QTLs ( P < 0.05) were detected on chromosomes 2, 4 and 5 in the recombinant inbred population derived from a cross between Landsberg erecta (L er −0) and Columbia (Col-4). The highest logarithm of odds (LOD) of 5.6 was detected with the QTL on chromosome 5 (QTL5), which is linked to the genetic marker CDPK9 and explained about 26% of the Cd tolerance variation. There was no significant difference in Cd-translocation ratio from roots to shoots between tolerant and sensitive recombinant inbreed lines (RILs), while greater accumulations of reactive oxygen species were observed in the roots of sensitive RILs. This suggested that accumulation of ROS would explain Cd tolerance variation of the L er /Col RILs, which is mainly controlled by the QTL on chromosome 5. The QTL5 in L er /Col population was also detected as one of the major QTLs controlling tolerances to hydrogen peroxide and to copper, which is another ROS generating rhizotoxic metal. The same chromosomal position was detected as a common major QTL for Cd and hydrogen peroxide tolerances in a different recombinant inbreed (RI) population derived from a cross of Col- gl1 and Kashmir (Kas-1). These data, along with a multitraits QTL analysis in both sets of RILs, suggest that peroxide damage depends on the genotype at a major Cd-tolerant locus on the upper part of chromosome 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号