首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
We have previously shown that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis, but not in that of distant metastasis, in oral squamous cell carcinoma (SCC). In this study, we investigated the role of the autocrine SDF-1/CXCR4 system, with a focus on distant metastasis in oral SCC cells. The immunohistochemical staining of SDF-1 and CXCR4 using primary oral SCCs and metastatic lymph nodes showed a significantly higher number of SDF-1-positive cases among the metastatic lymph nodes than among the primary oral SCCs, which was associated with a poor survival rate among those of the former group. The forced expression of SDF-1 in B88 cells, which exhibit functional CXCR4 and lymph node metastatic potential (i.e., the autocrine SDF-1/CXCR4 system), conferred enhanced cell motility and anchorage-independent growth potential onto the cells. Orthotopic inoculation of the transfectant into nude mice was associated with an increase in the number of metastatic lymph nodes and more aggressive metastatic foci in the lymph nodes. Furthermore, the SDF-1 transfectant (i.e., the autocrine SDF-1/CXCR4 system) exhibited dramatic metastasis to the lung after i.v. inoculation, whereas the mock transfectant (i.e., the paracrine SDF-1/CXCR4 system) did not. Under the present conditions, AMD3100, a CXCR4 antagonist, significantly inhibited the lung metastasis of the SDF-1 transfectant, ameliorated body weight loss, and improved the survival rate of tumor-bearing nude mice. These results suggested that, in cases of oral SCC, the paracrine SDF-1/CXCR4 system potentiates lymph node metastasis, but distant metastasis might require the autocrine SDF-1/CXCR4 system.  相似文献   

2.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. The alpha-chemokine stromal cell-derived factor (SDF)-1 alpha binds to the seven transmembrane G-protein-coupled CXCR-4 receptor and acts to modulate cell migration and proliferation by activating multiple signal transduction pathways. Leucine-rich repeats containing 4 (LRRC4), a putative glioma suppressive gene, inhibits glioblastoma cells tumorigenesis in vivo and cell proliferation and invasion in vitro. We also previously demonstrated that LRRC4 controlled glioblastoma cells proliferation by ERK/AKT/NF-kappa B signaling pathway. In the present study, we demonstrate that CXC chemokine receptor 4 (CXCR4) is expressed in human glioblastoma U251 cell line, and that SDF-1 alpha increases the proliferation, chemotaxis, and invasion in CXCR4+ glioblastoma U251 cells through the activation of ERK1/2 and Akt. The reintroduction of LRRC4 in U251 cells inhibits the expression of CXCR4 and SDF-1 alpha/CXCR4 axis-mediated downstream intracellular pathways such as ERK1/2 and Akt leading to proliferate, chemotactic and invasive effects. Furthermore, we provide evidence for proMMP-2 activation involvement in the SDF-1 alpha/CXCR4 axis-mediated signaling pathway. LRRC4 significantly inhibits proMMP-2 activation by SDF-1 alpha/CXCR4 axis-mediated ERK1/2 and Akt signaling pathway. Collectively, these results suggest a possible important "cross-talk" between LRRC4 and SDF-1 alpha/CXCR4 axis-mediated intracellular pathways that can link signals of cell proliferation, chemotaxis and invasion in glioblastoma, and may represent a new target for development of new therapeutic strategies in glioma.  相似文献   

3.
Stromal-derived factor-1 (SDF-1) is a unique ligand of the CXC chemokine receptor 4 (CXCR4), which is critically involved in the metastasis of breast cancer. High levels of SDF-1 in the common destination organs of metastasis, such as the lymph nodes, lungs, liver, and bones, attract CXCR4-positive tumor cells. The interaction between SDF-1 and CXCR4 leads to the activation of specific signaling pathways, allowing for homing and metastatic progression. However, regulation of CXCR4 expression at the metastatic organ site is not well-documented. We detected the expression of CXCR4 and hypoxia inducible factor (HIF)-1alpha in breast tumor tissues by immunohistochemical staining and analyzed SDF-1 in primary tumors and lymph nodes using real-time RT-PCR. Compared to the corresponding metastasized tumors in the lymph nodes, primary invasive carcinomas showed more intense staining for CXCR4, particularly on the cellular membrane. Both primary tumors and lymph node metastases exhibited higher levels of CXCR4 expression compared to non-neoplastic breast tissues. Therefore, we hypothesized that the tumor environment in the lymph nodes may cause the reduction of CXCR4 levels in the metastatic tumor cells because of: (1) high SDF-1 levels and (2) lower levels of HIF-1alpha. Our in vitro data demonstrated that high levels of SDF-1 can induce the internalization and degradation of CXCR4 through the lysosome pathway. In addition, lower levels of HIF-1alpha in the lymph node metastases, probably induced by the less hypoxic environment, further lowered CXCR4 levels. These results indicate that ligand-dependent degradation and lower HIF-1alpha levels may be potential causes of lowered levels of CXCR4 in the lymph nodes compared to the primary tumors. Our study suggests that CXCR4 levels in tumor cells are regulated by its microenvironment. These findings may enhance our ability to understand the biological behavior of breast cancers.  相似文献   

4.
5.
CXC chemokine recepter-4 (CXCR4) and its ligand, stromal cell-derived factor-1alpha (SDF-1alpha) have been implicated in the organ-specific metastasis of several malignancies. Hca-F and its syngeneic cell line Hca-P are mouse hepatocarcinoma cell lines with high and low potential of lymphatic metastasis, respectively. Previous studies showed that the secretion of matrix metalloproteinases (MMPs) associated with the metastatic ability of Hca-F and Hca-P cell line depending on the lymph node environment. However, the mechanism of this process has remained unclear. This study investigated the roles of CXCR4 on Hca-F cell and SDF-1alpha of lymph node in lymphatic metastasis. The RT-PCR and Flow cytometry analysis results show that Hca-F cells express higher level CXCR4 mRNA and cell-surface CXCR4 protein, as compared with Hca-P cells. Treatment of recombinant SDF-1alpha proteins induced greater amount of calcium-flux in Hca-F cells than that in Hca-P cells, demonstrating higher functional CXCR4 expression on Hca-F cells than that on Hca-P cells. Furthermore, both the cell-free extratcs of lymph node and recombinant SDF-1alpha proteins induced secretions of active MMP-9 and MMP-2 from Hca-F cells in vitro. But those secretions were significantly reduced by blockade of cell surface CXCR4 with rabbit anti-mouse CXCR4 polyclonal antibody (pAb) and neutralization of SDF-1alpha in lymph node extracts with rabbit anti-mouse SDF-1alpha pAb as well. These results suggest that the CXCR4/SDF-1alpha system mediates active MMP-9 and MMP-2 secretion from Hca-F and Hca-P cells, which facilitates lymphogenous metastasis of those cells consequently.  相似文献   

6.
Chemokine-driven migration is accompanied by polarization of the cell body and of the intracellular signaling machinery. The extent to which chemokine receptors polarize during chemotaxis is currently unclear. To analyze the distribution of the chemokine receptor CXCR4 during SDF-1 (CXCL12)-induced chemotaxis, we retrovirally expressed a CXCR4-GFP fusion protein in the CXCR4-deficient human hematopoietic progenitor cell line KG1a. This KG1a CXCR4-GFP cell line showed full restoration of SDF-1 responsiveness in assays detecting activation of ERK1/2 phosphorylation, actin polymerization, adhesion to endothelium under conditions of physiological flow, and (transendothelial) chemotaxis. When adhered to cytokine-activated endothelium in the absence of SDF-1, CXCR4 did not localize to the leading edge of the cell but was uniformly distributed over the plasma membrane. In contrast, when SDF-1 was immobilized on cytokine-activated endothelium, the CXCR4-GFP receptors that were present on the cell surface markedly redistributed to the leading edge of migrating cells. In addition, CXCR4-GFP co-localized with lipid rafts in the leading edge of SDF-1-stimulated cells, at the sites of contact with the endothelial surface. Inhibition of lipid raft formation prevents SDF-1-dependent migration, internalization of CXCR4, and polarization to the leading edge of CXCR4, indicating that CXCR4 surface expression and signaling requires lipid rafts. These data show that SDF-1, immobilized on activated human endothelium, induces polarization of CXCR4 to the leading edge of migrating cells, revealing co-operativity between chemokine and substrate in the control of cell migration.  相似文献   

7.
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral cancer. Recently, small non coding RNAs, microRNAs (miRNAs) have been shown to be involved in the metastatic process of several types of cancers. However, the miRNAs that contribute to metastases induced by the SDF-1/CXCR4 system in oral cancer are largely unknown. In this study, we examined the metastasis-related miRNAs induced by the SDF-1/CXCR4 system using B88-SDF-1 oral cancer cells, which exhibit functional CXCR4 and distant metastatic potential in vivo. Through miRNA microarray analysis, we identified the upregulation of miR-518c-5p in B88-SDF-1 cells, and confirmed the induction by real-time PCR analysis. Although an LNA-based miR-518c-5p inhibitor did not affect cell growth of B88-SDF-1 cells, it did significantly inhibit the migration of the cells. Next, we transfected a miR-518c expression vector into parental B88 cells and CAL27 oral cancer cells and isolated stable transfectants, B88-518c and CAL27-518c cells, respectively. The anchorage-dependent and -independent growth of miR-518c transfectants was significantly enhanced compared with the growth of mock cells. Moreover, we detected the enhanced migration of these cells. The LNA-based miR-518c-5p inhibitor significantly impaired the enhanced cell growth and migration of miR-518c transfectants, indicating that these phenomena were mainly dependent on the expression of miR-518c-5p. Next, we examined the function of miR-518c-5p in vivo. miR-518c transfectants or mock transfectants were inoculated into the masseter muscle or the blood vessels of nude mice. Tumor volume, lymph nodes metastasis, and lung metastasis were significantly increased in the mice inoculated with the miR-518c transfectants. These results indicated that miR-518c-5p regulates the growth and metastasis of oral cancer as a downstream target of the SDF-1/CXCR4 system.  相似文献   

8.
Chemokine receptors CXCR7 and CXCR4 bind to the same ligand stromal cell derived factor-1alpha (SDF-1α/CXCL12). We assessed the downstream signaling pathways mediated by CXCL12-CXCR7 interaction in Jurkat T cells. All experiments were carried out after functionally blocking the CXCR4 receptor. CXCL12, on binding CXCR7, induced phosphorylation of extra cellular regulated protein kinases (ERK 1/2) and Akt. Selective inhibition of each signal demonstrated that phosphorylated ERK 1/2 is essential for chemotaxis and survival of T cells whereas activation of Akt promotes only cell survival. Another interesting finding of this study is that CXCL12-CXCR7 interaction under normal physiological conditions does not activate the p38 pathway. Furthermore, we observed that the CXCL12 signaling via CXCR7 is Giα independent. Our findings suggest that CXCR7 promotes cell survival and does not induce cell death in T cells. The CXCL12 signaling via CXCR7 may be crucial in determining the fate of the activated T cells.  相似文献   

9.
Stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 receptor, is a chemokine involved in chemotaxis and brain development that also acts as co-receptor for HIV-1 infection. We previously demonstrated that CXCR4 and SDF-1alpha are expressed in cultured type-I cortical rat astrocytes, cortical neurones and cerebellar granule cells. Here, we investigated the possible functions of CXCR4 expressed in rat type-I cortical astrocytes and demonstrated that SDF-1alpha stimulated the proliferation of these cells in vitro. The proliferative activity induced by SDF-1alpha in astrocytes was reduced by PD98059, indicating the involvement of extracellular signal-regulated kinases (ERK1/2) in the astrocyte proliferation induced by CXCR4 stimulation. This observation was further confirmed showing that SDF-1alpha treatment selectively activated ERK1/2, but not p38 or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Moreover, both astrocyte proliferation and ERK1/2 phosphorylation, induced by SDF-1alpha, were inhibited by pertussis toxin (PTX) and wortmannin treatment indicating the involvement of a PTX sensitive G-protein and of phosphatidyl inositol-3 kinase in the signalling of SDF-1alpha. In addition, Pyk2 activation represent an upstream components for the CXCR4 signalling to ERK1/2 in astrocytes. To our knowledge, this is the first report demonstrating a proliferative effect for SDF-1alpha in primary cultures of rat type-I astrocytes, and showing that the activation of ERK1/2 is responsible for this effect. These data suggest that CXCR4/SDF-1 should play an important role in physiological and pathological glial proliferation, such as brain development, reactive gliosis and brain tumour formation.  相似文献   

10.
We have demonstrated that blocking CXCR4 may be a potent anti-metastatic therapy for CXCR4-related oral cancer. However, as CXCR4 antagonists are currently in clinical use to induce the mobilization of hematopoietic stem cells, continuous administration as an inhibitor for the metastasis may lead to persistent leukocytosis. In this study, we investigated the novel therapeutic downstream target(s) of the SDF-1/CXCR4 system, using B88-SDF-1 cells, which have an autocrine SDF-1/CXCR4 system and exhibit distant metastatic potential in vivo. Microarray analysis revealed that 418 genes were upregulated in B88-SDF-1 cells. We identified a gene that is highly upregulated in B88-SDF-1 cells, metabotropic glutamate receptor 5 (mGluR5), which was downregulated following treatment with 1,1’ -[1,4-Phenylenebis(methylene)]bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist. The upregulation of mGluR5 mRNA in the SDF-1/CXCR4 system was predominately regulated by the Ras-extracellular signal-regulated kinase (ERK)1/2 pathway. Additionally, the growth of B88-SDF-1 cells was not affected by the mGluR5 agonist (S)-3,5-DHPG (DHPG) or the mGluR5 antagonists 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP). However, we observed that DHPG promoted B88-SDF-1 cell migration, whereas both MPEP and MTEP inhibited B88-SDF-1 cell migration. To assess drug toxicity, the antagonists were intraperitoneally injected into immunocompetent mice for 4 weeks. Mice injected with MPEP (5 mg/kg) and MTEP (5 mg/kg) did not exhibit any side effects, such as hematotoxicity, allergic reactions or weight loss. The administration of antagonists significantly inhibited the metastasis of B88-SDF-1 cells to the lungs of nude mice. These results suggest that blocking mGluR5 with antagonists such as MPEP and MTEP could prevent metastasis in CXCR4-related oral cancer without causing side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号