首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
Ailanthus altissima Mill. Swingle (Simaroubaceae), also known as tree of heaven, is used in the Chinese traditional medicine as a bitter aromatic drug for the treatment of colds and gastric diseases. In Tunisia, Ailanthus altissima is an exotic tree, which was introduced many years ago and used particularly as a street ornamental tree. Here, the essential oils of different plant parts of this tree, viz., roots, stems, leaves, flowers, and samaras (ripe fruits), were obtained by hydrodistillation. In total, 69 compounds, representing 91.0–97.2% of the whole oil composition, were identified in these oils by GC‐FID and GC/MS analyses. The root essential oil was clearly distinguishable for its high content in aldehydes (hexadecanal ( 1 ); 22.6%), while those obtained from flowers and leaves were dominated by oxygenated sesquiterpenes (74.8 and 42.1%, resp.), with caryophyllene oxide ( 4 ) as the major component (42.5 and 22.7%, resp.). The samara oil was rich in the apocarotenoid derivative hexahydrofarnesyl acetone ( 6 ; 58.0%), and the oil obtained from stems was characterized by sesquiterpene hydrocarbons (54.1%), mainly β‐caryophyllene (18.9%). Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by all the essential oils except of the samara oil at a dose of 1 mg/ml. The flower oil also showed a significant phytotoxic effect against lettuce germination at 0.04 and 0.4 mg/ml (?55.0±3.5 and ?85.0±0.7%, resp.). Moreover, the root and shoot elongation was even more affected by the oils than germination. The inhibitory effect of the shoot and root elongation varied from ?9.8 to ?100% and from ?38.6 to ?100%, respectively. Total inhibition of the elongation (?100%) at 1 mg/ml was detected for all the oils, with the exception of the samara oil (?74.7 and ?75.1% for roots and shoots, resp.).  相似文献   

2.
Citharexylum spinosum L. (Verbenaceae) also known as Citharexylum quadrangulare Jacq . or Citharexylum fruticosum L. is an exotic tree introduced many years ago in Tunisia, specially used as a street and park ornamental tree. Essential oils (EOs) were obtained by hydrodistillation of the different parts (roots, stems, leaves, flowers and fruits; drupes) collected from trees grown in the area of Monastir (Tunisia). In total, 84 compounds, representing 90.1 – 98.4% of the whole oil composition, were identified by GC‐FID and GC/MS analyses. The root EO was distinguished by its high content in monoterpene hydrocarbons (α‐phellandrene; 30.8%) whereas that obtained from stems was dominated by sesquiterpene hydrocarbons (cuparene; 16.4%). The leaf oil was rich in an apocarotenoid derivative (hexahydrofarnesylacetone; 26%) and an aliphatic hydrocarbon (nonadecane; 14.5%). Flowers oil was rich in esters (2‐phenylethyl benzoate; 33.5%). Finally, drupes oil was rich in oxygenated sesquiterpenes (β‐eudesmol; 33.1%). Flowers oil showed a significant phytotoxic effect against lettuce seeds germination, it induces a total inhibition when tested at 1 mg/ml. Root and shoot elongation seemed to be more affected than germination. The inhibition of the shoot length varied from 3.6% to 100% and that of the root from 16.1% to 100%. The highest inhibition of 100% was detected for flower oil tested at 1 mg/ml. Our in vitro studies suggest a possible and new alternative use of Cspinosum EOs in herbicidal formulations, further experiments involving field conditions are necessary to confirm its herbicidal potential.  相似文献   

3.
Acacia cyanophylla Lindl . (Fabaceae), synonym Acacia saligna (Labill .) H. L.Wendl ., native to West Australia and naturalized in North Africa and South Europe, was introduced in Tunisia for rangeland rehabilitation, particularly in the semiarid zones. In addition, this evergreen tree represents a potential forage resource, particularly during periods of drought. A. cyanophylla is abundant in Tunisia and some other Mediterranean countries. The chemical composition of the essential oils obtained by hydrodistillation from different plant parts, viz., roots, stems, phyllodes, flowers, and pods (fully mature fruits without seeds), was characterized for the first time here. According to GC‐FID and GC/MS analyses, the principal compound in the phyllode and flower oils was dodecanoic acid ( 4 ), representing 22.8 and 66.5% of the total oil, respectively. Phenylethyl salicylate ( 8 ; 34.9%), heptyl valerate ( 3 ; 17.3%), and nonadecane (36%) were the main compounds in the root, stem, and pod oils, respectively. The phyllode and flower oils were very similar, containing almost the same compounds. Nevertheless, the phyllode oil differed from the flower oil for its higher contents of hexahydrofarnesyl acetone ( 6 ), linalool ( 1 ), pentadecanal, α‐terpineol, and benzyl benzoate ( 5 ) and its lower content of 4 . Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by its main constituents. Furthermore, the allelopathic activity of each oil was evaluated using lettuce (Lactuca sativa L.) as a plant model. The phyllode, flower, and pod oils exhibited a strong allelopathic activity against lettuce.  相似文献   

4.
The chemical composition of the essential oils obtained by hydrodistillation of leaves, stems, and female cones of Cupressus arizonica Greene , grown in Tunisia, was studied by GC‐FID and GC/MS analyses. Altogether, 62 compounds were identified, 62 in the leaf oil, 19 in the cone oil, and 24 in the stem oil. The cone and stem oils were mainly composed by monoterpene hydrocarbons (96.6 and 85.2%, resp.). In the leaf oil, the total sesquiterpene fraction constituted 36.1% and that of the monoterpene hydrocarbons 33.8% of the total oil composition. The three oils were evaluated for their in vitro herbicidal activity by determining their influence on the germination and the shoot and root growth of the four weed species Sinapis arvensis L., Lolium rigidum Gaudin , Trifolium campestre Schreb ., and Phalaris canariensis L. At the highest doses tested (0.8 and 1.0 mg/ml), the leaf essential oil inhibited either totally or almost completely the seed germination and the shoot and root growth of S. arvensis and T. campestre. The oils were also tested for their antifungal activity; however, their effects on the fungal growth were statistically not significant.  相似文献   

5.
Conyza sumatrensis (Retz.) E.Walker (Asteraceae) is a spontaneous annual herb, fairly widespread throughout Tunisia, which has rarely been studied or valued in any sector. Essential oils were obtained by hydrodistillation of different parts (flower heads, leaves, stems, and roots) of C. sumatrensis plants, which were collected in autumn (November 2007) at the flowering stage in the area of Monastir, Tunisia. In total, 98 compounds, representing 88.1–99.3% of the oil composition, were identified by GC‐FID and GC/MS analyses. The root essential oil was distinguished by its high content in acetylenes (matricaria ester, 4 ; 74.3%), while those from flower heads and leaves were dominated by oxygenated sesquiterpenes (61.1 and 50.3%, resp.). The oils of C. sumatrensis from Tunisia belonged to a matricaria ester/caryophyllene oxide chemotype. All the oils were evaluated for antibacterial, antifungal, and allelopathic activities. The results indicate that the leaf oil exhibited significant in vitro antibacterial activity against Enterococcus faecalis, Staphylococcus aureus, and Proteus mirabilis and that the C. sumatrensis oils isolated from the aerial parts presented high mycelia‐growth inhibition of Candida albicans and the filamentous fungi tested. Moreover, the essential oils of the different plant parts inhibited the shoot and root growth of Raphanus sativus (radish) seedlings. Indeed, the inhibition of the hypocotyl growth varied from 28.6 to 90.1% and that of the radicle from 42.3 to 96.2%.  相似文献   

6.
In this work, the chemical composition, antimicrobial and cytotoxic activity of Heracleum verticillatum Pan?i? and H. ternatum Velen . root, leaf, and fruit essential oils were investigated. The composition was analyzed by GC and GC/MS. Heracleum verticillatum and H. ternatum root oils were dominated by monoterpenes, mostly β‐pinene (23.5% and 47.3%, respectively). Heracleum verticillatum leaf oil was characterized by monoterpenes, mainly limonene (20.3%), and sesquiterpenes, mostly (E)‐caryophyllene (19.1%), while H. ternatum leaf oil by the high percentage of phenylpropanoids, with (Z)‐isoelemicin (35.1%) being dominant constituent. Both fruit oils contained the majority of aliphatic esters, mostly octyl acetate (42.3% in Hverticillatum oil and 49.0% in Hternatum oil). The antimicrobial activity of the oils was determined by microdilution method against eight bacterial and eight fungal strains. The strongest effect was exhibited by H. verticillatum root oil, particularly against Staphylococcus aureus, Salmonella typhimurium (MICs = 0.14 mg/ml, MBCs = 0.28 mg/ml), and Trichoderma viride (MIC = 0.05 mg/ml, MFC = 0.11 mg/ml). Cytotoxic effect was determined by MTT test against malignant HeLa, LS174, and A549 cells (IC50 = 5.9 – 146.0 μg/ml), and against normal MRC‐5 cells (IC50 > 120.1 μg/ml). The best effect was exhibited by H. verticillatum root oil on A549 cells (IC50 = 5.9 μg/ml), and H. ternatum root oil against LS174 cells (IC50 = 6.7 μg/ml).  相似文献   

7.
The chemical composition of the volatile oils obtained from the roots, leaves, flowers, and stems of Thapsia garganica of Tunisian origin was investigated by GC‐FID and GC/MS analyses. Sesquiterpene hydrocarbons and oxygenated monoterpenes were predominant in the oils of all plant parts. Bicyclogermacrene (21.59–35.09%) was the main component in the former compound class, whereas geranial (3.31–14.84%) and linalool (0.81–10.9%) were the most prominent ones in the latter compound class. Principal‐component (PCA) and hierarchical‐cluster (HCA) analyses revealed some common constituents, but also significant variability amongst the oils of the different plant parts. This organ‐specific oil composition was discussed in relation to their biological and ecological functions. For the evaluation of the intraspecific chemical variability in T. garganica, the composition of the flower volatile oils from four wild populations was investigated. Bicyclogermacrene, linalool, and geranial were predominant in the oils of three populations, whereas epicubenol, β‐sesquiphellandrene, and cadina‐1,4‐diene were the most prominent components of the oil of one population. PCA and HCA allowed the separation of the flower oils into three distinct groups, however, no relationship was found between the volatile‐oil composition and the geographical distribution and pedoclimatic conditions of the studied populations.  相似文献   

8.
The composition of the essential oils obtained by hydrodistillation of different parts of Litsea cubeba, including roots, stems, leaves, alabastra (flower buds), flowers, and fruits, were investigated by GC (RI) and GC/MS. The antimicrobial activity of the oils was assessed with disc diffusion and microbroth dilution assays. The results showed large variations in the composition among the different oils. The major components in the oils from roots and fruits, from stems, leaves, and alabastra, and from flowers were citral B (neral), β‐phellandrene, and β‐terpinene, respectively. The inhibition zone (DD) and MIC values for the bacterial strains tested, which were all sensitive to the essential oil of L. cubeba, were in the range of 10.1–35.0 mm and 100–1000 μg/ml, respectively. Hence, the oils of the various parts showed moderate activity against the tested bacteria. This investigation showed that the antibacterial activity of L. cubeba was attributed to the essential oils, thus they can be a potential medicinal resource.  相似文献   

9.
Essential oils of Lavandula dentata, a Tunisian native plant, were isolated from leaves and flowers by hydrodistillation in a Clevenger‐type apparatus and characterized by GC‐FID and GC/MS analyses. The average essential oil yields, means of five replicates, were higher for the flowers (8.60 mg/g) than for the leaves (6.56 mg/g). A total of 72 compounds were identified, accounting for 98.1 and 97.7% of the total oil composition of the leaves and flowers, respectively. The main essential oil constituents were 1,8‐cineole, camphor, and L ‐fenchone, accounting for 33.54, 18.89, and 8.36% in the leaf oils and for 19.85, 23.33, and 7.13% in the flower oils, respectively. Besides this quantitative variation, the results also showed considerable qualitative variation between the essential oils of the two plant parts analyzed. These differences might be adaptative responses to ecological exigencies.  相似文献   

10.
The chemical composition, antibacterial and antioxidant activities of the essential oil obtained from Eryngium triquetrum from Algeria were studied. The chemical composition of sample oils from 25 locations was investigated using GC‐FID and GC/MS. Twenty‐four components representing always more than 87% were identified in essential oils from total aerial parts of plants, stems, flowers and roots. Falcarinol is highly dominant in the essential oil from the roots (95.5%). The relative abundance of falcarinol in the aerial parts correlates with the phenological stages of the plant. Aerial parts of E. triquetrum produce an essential oil dominated by falcarinol during the early flowering stage, and then there is a decrease in falcarinol and rebalancing of octanal during the flowering stage. To our knowledge, the present study is the first report of the chemical composition of E. triquetrum essential oil. Evaluation of the antibacterial activity by means of the paper disc diffusion method and minimum inhibitory concentration assays, showed a moderate efficiency of E. triquetrum essential oil. Using the DPPH method, the interesting antioxidant activity of E. triquetrum essential oil was established. These activities could be attributed to the dominance of falcarinol. The outcome of our literature search on the occurrence of falcarinol in essential oils suggests that E. triquetrum from Algeria could be considered as a possible source of natural falcarinol.  相似文献   

11.
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC‐FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63–89.93% of the total oil composition). The main volatile compounds identified were β‐bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition‐specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk‐diffusion method, against one Gram‐positive (Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms.  相似文献   

12.
The chemical composition and antioxidant activity of essential oils and MeOH extracts of stems, needles, and berries from Juniperus rigida were studied. The results indicated that the yield of essential oil from stems (2.5%) was higher than from needles (0.8%) and berries (1.0%). The gas chromatography/mass spectrometer (GC/MS) analysis indicated that 21, 17, and 14 compounds were identified from stems, needles, and berries essential oils, respectively. Caryophyllene, α‐caryophyllene, and caryophyllene oxide were primary compounds in both stems and needles essential oils. However, α‐pinene and β‐myrcene mainly existed in berries essential oils and α‐ionone only in needles essential oils. The high‐performance liquid chromatography (HPLC) analysis indicated that the phenolic profiles of three parts exhibited significant differences. Needles extracts had the highest content of chlorogenic acid, catechin, podophyllotoxin, and amentoflavone, and for berries extracts, the content of those compounds was the lowest. Meanwhile, three in vitro methods (DPPH, ABTS, and FRAP) were used to evaluate antioxidant activity. Stems essential oil and needles extracts exhibited the powerful antioxidant activity than other parts. This is the first comprehensive study on the different parts of J. rigida. The results suggested that stems and needles of J. rigida are useful supplements for healthy products as new resources.  相似文献   

13.
The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC‐FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90 – 99% of the total oil compositions. The main components were linalool ( 18 ; 12.5 – 22.6%), 2‐methylbutyl 2‐methylbutyrate ( 20 ; 9.2 – 20.2%), 2‐methylbutyl isobutyrate ( 10 ; 4.2 – 12.2%), ammimajane ( 47 ; 2.6 – 37.1%), (E)‐β‐ocimene ( 15 ; 0.2 – 12.8%) and 3‐methylbutyl isovalerate ( 19 ; 3.3 – 9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2‐methylbutyl 2‐methylbutyrate (18.9%), 2‐methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3‐methylbutyl isovalerate (10.3%), (E)‐β‐ocimene (8.4%) and isopentyl 2‐methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced.  相似文献   

14.
The genus Acacia is quite large and can be found in the warm subarid and arid parts, but little is known about its chemistry, especially the volatile parts. The volatile oils from fresh flowers of Amollissima and Acyclops (growing in Tunisia) obtained by hydrodistillation were analyzed by GC then GC/MS. Eighteen (94.7% of the total oil composition) and 23 (97.4%) compounds were identified in these oils, respectively. (E,E)‐α‐Farnesene (51.5%) and (E)‐cinnamyl alcohol (10.7%) constituted the major compounds of the flower oil of Amollissima, while nonadecane (29.6%) and caryophyllene oxide (15.9%) were the main constituents of the essential oil of Acyclops. Antioxidant activity of the isolated oils was studied by varied assays, i.e., 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2‐azinobis 3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS); the isolated oils showed lowest IC50 (4 – 39 μg/ml) indicating their high antioxidant activity. The α‐glucosidase inhibitor activity was also evaluated and Acacia oils were found to be able to strongly inhibit this enzyme with IC50 values (81 – 89 μg/ml) very close to that of acarbose which was used as positive control. Furthermore, they were tested against five Gram‐positive and Gram‐negative bacteria and one Candida species. Essential oil of Amollissima was found to be more active than that of Acyclops, especially against Pseudomonas aeruginosa (MIC = 0.31 mg/ml and MBC = 0.62 mg/ml).  相似文献   

15.
The chemical composition of the essential oils isolated from the aerial parts of Anthemis pignattiorum Guarino, Raimondo & Domina and A. ismelia Lojac . and the aerial parts and flowers of Anthemis cupaniana Tod . ex Nyman , three endemic Sicilian species belonging to the section Hiorthia, was determined by GC‐FID and GC/MS analyses. (Z)‐Muurola‐4(14),5‐diene (27.3%) was recognized as the main constituent of the A. pignattiorum essential oil, together with isospathulenol (10.6%), sabinene (7.7%), and artemisyl acetate (6.8%), while in the oil obtained from the aerial parts of A. ismelia, geranyl propionate (8.8%), bornyl acetate (7.9%), β‐thujone (7.8%), neryl propionate (6.5%), and τ‐muurolol (6.5%) prevailed. α‐Pinene was the main compound of both the aerial part and flower oils of A. cupaniana (18.4 and 13.2%, resp.). Also noteworthy are the considerable amounts of artemisyl acetate (12.7%) and β‐thujone (11.8%) found in the oil from the aerial parts and those of tricosane (9.8%) and sabinene (7.6%) evidenced in the flower oil. Furthermore, an update on the main compounds identified in the essential oils of all the Anthemis taxa studied so far was presented, and cluster analyses were carried out, to compare the essential oils of these taxa.  相似文献   

16.
This study describes the GC‐FID, GC/MS, GC‐O, and enantioselective GC analysis of the essential oil hydrodistilled from leaves of Lepechinica mutica (Lamiaceae), collected in Ecuador. GC‐FID and GC/MS analyses allowed the characterization and quantification of 79 components, representing 97.3% of the total sample. Sesquiterpene hydrocarbons (38.50%) and monoterpene hydrocarbons (30.59%) were found to be the most abundant volatiles, while oxygenated sesquiterpenes (16.20%) and oxygenated monoterpenes (2.10%) were the minor components. In order to better characterize the oil aroma, the most important odorants, from the sensorial point of view, were identified by Aroma Extract Dilution Analysis (AEDA) GC‐O. They were α‐Pinene, β‐Phellandrene, and Dauca‐5,8‐diene, exhibiting the characteristic woody, herbaceus, and earthy odors, respectively. Enantioselective GC analysis of Lmutica essential oil revealed the presence of twelve couples and two enantiomerically pure chiral monoterpenoids. Their enantiomeric excesses were from a few percent units to 100%. Moreover, the essential oil exhibited moderate in vitro activity against five fungal strains, being especially effective against Mcanis, which is a severe zoophilic dermatophyte causal agent of pet and human infections.  相似文献   

17.
The essential oils of five Lavandula stoechas cultivars grown in Thailand were characterized for their volatile compounds using GC‐FID and GC/MS methods as well as screened for antibacterial and antioxidant activities. Dried aerial parts, including flowers and stems from each cultivar, were subjected to hydrodistillation for 4 h. The essential oil yields were 0.18 %–0.82 % w/w. Of the 95 compounds detected and identified, 1,8‐cineole, fenchone, and camphor were considered the major compounds. Essential oil from each cultivar demonstrated different patterns of antibacterial activity and a variety of antioxidant properties. The highest antibacterial activity, MIC=0.39 mg mL?1, was observed from the essential oil of L. stoechas ‘major’ (against Klebsiella pneumoniae and Salmonella typhimurium) and the essential oil of L. stoechas ‘white lavender’ (against S. typhimurium). The essential oil of L. stoechas×viridis ‘St. Brelade’ possessed the highest antioxidant capacity, as determined by the DPPH and ABTS assays (IC50 of 67.65 and 89.26 mg mL?1, respectively). The results indicated that some of these essential oils could be used as key ingredients in lavender oil products in Thailand to increase their therapeutic efficacy, depending on their intended application.  相似文献   

18.
The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk . were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC‐FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α‐thujone (34.39%), camphor (17.48%), and β‐thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α‐thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α‐thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram‐positive and Gram‐negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.  相似文献   

19.
The hydrodistilled essential oils (EOs) from flowers of five Adriatic populations of Anthemis maritima were analyzed by GC‐FID and GC/MS. Anthemis maritima is a psammophilous plant living generally on coastal sand dunes but occasionally on sea cliffs and shingle beaches. A total of 163 chemical compounds were identified, accounting for 90.5% of the oils. The main classes of compounds represented in the EOs were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, and terpene esters.The multivariate chemometric techniques, in particular cluster analysis and principal coordinate analysis, used to classify the samples, highlighted three different chemotypes linked to a geographic origin. One group living in northern Italy was characterized by the highest content of β‐pinene, γ‐terpinene, and β‐caryophyllene, a second chemotype was in central Italy with the highest amount of trans‐chrysanthenyl acetate and a third group living in southern Italy with a more heterogeneous volatile profile was characterized by the highest values of cis‐chrysanthenyl acetate, trans‐chrysanthenyl isobutyrate, cis‐carveol propionate, α‐zingiberene, and cubenol. Moreover, the comparison of the Adriatic populations with the Tyrrhenian samples, analyzed in a previous research, showed that cubenol (absent in all the Tyrrhenian populations) and (E)‐β‐farnesene (absent in all the Adriatic samples) play a crucial role in discriminating the Italian populations.  相似文献   

20.
The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α‐ and β‐pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from Ppungens seeds and cones was similar, while the hydrodistilled oils of Porientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however Porientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of Ppungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC‐1) were similar: in a concentration of 0 – 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 – 0.005 μl/ml for HMEC‐1 cells. IC50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC50 of both oils were 0.035 μl/ml for HMEC‐1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号