首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
We have determined the nucleotide sequence of the gene for fructose-1,6-bisphosphatase from both Saccharomyces cerevisiae and Schizosaccharomyces pombe. The predicted protein sequence for fructose-1,6-bisphosphatase from S. cerevisiae contains 347 amino acids and has a molecular weight of 38,100; that from S. pombe, contains 346 amino acids and has a molecular weight of 38,380. Comparison of these amino acid sequences with each other and that of pig kidney fructose-1,6-bisphosphatase shows several regions of strong homology separated by regions of divergence. These homologous regions are likely candidates for functional domains. A gene cassette was constructed for fructose-1,6-bisphosphatase from S. cerevisiae and the gene cassette expressed from the regulated PHO5 and GAL1 promoters of yeast. Yeast cells expressing fructose-1,6-bisphosphatase, while growing on glucose, accumulated large amounts of enzyme intracellularly, suggesting that glucose-regulated proteolytic inactivation does not operate efficiently under these conditions. Growth on glucose was not inhibited by the expression of fructose 1,6-bisphosphatase.  相似文献   

2.
3.
4.
We have cloned and characterized the alpha-amylase gene (AMY1) of the yeast Schwanniomyces occidentalis. A cosmid gene library of S. occidentalis DNA was screened in Saccharomyces cerevisiae for alpha-amylase secretion. The positive clone contained a DNA fragment harbouring an open reading frame of 1536 nucleotides coding for a 512-amino-acid polypeptide with a calculated Mr of 56,500. The deduced amino acid sequence reveals significant similarity to the sequence of the Saccharomycopsis fibuligera and Aspergillus oryzae alpha-amylases. The AMY l gene was found to be expressed from its original promoter in S. cerevisiae, Kluyveromyces lactis and Schizo-saccharomyces pombe leading to an active secreted gene product and thus enabling the different yeast transformants to grow on starch as a sole carbon source.  相似文献   

5.
Squalene synthetase (farnesyl diphosphate:farnesyl diphosphate farnesyltransferase; EC 2.5.1.21) is thought to represent a major control point of isoprene and sterol biosynthesis in eukaryotes. We demonstrate structural and functional conservation between the enzymes from humans, a budding yeast (Saccharomyces cerevisiae), and a fission yeast (Schizosaccharomyces pombe). The amino acid sequences of the human and S. pombe proteins deduced from cloned cDNAs were compared to those of the known S. cerevisiae protein. All are predicted to encode C-terminal membrane-spanning proteins of approximately 50 kDa with similar hydropathy profiles. Extensive sequence conservation exists in regions of the enzyme proposed to interact with its prenyl substrates (i.e., two farnesyl diphosphate molecules). Many of the highly conserved regions are also present in phytoene and prephytoene diphosphate synthetases, enzymes which catalyze prenyl substrate condensation reactions analogous to that of squalene synthetase. Expression of cDNA clones encoding S. pombe or hybrid human-S. cerevisiae squalene synthetases reversed the ergosterol requirement of S. cerevisiae cells bearing ERG9 gene disruptions, showing that these enzymes can functionally replace the S. cerevisiae enzyme. Inhibition of sterol synthesis in S. cerevisiae and S. pombe cells or in cultured human fibroblasts by treatment with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor lovastatin resulted in elevated levels of squalene synthetase mRNA in all three cell types.  相似文献   

6.
7.
8.
Histone genes of the fission yeast Schizosaccharomyces pombe were cloned from Charon 4A and cosmid gene libraries by hybridization, and their nucleotide sequences were determined. The genome of S. pombe has a single, isolated H2A, a pair of H2A-H2B and three pairs of H3-H4 (one H2B, two H2A and three each of H3 and H4). This non-assorted histone gene organization is distinct from that of the budding yeast which has two pairs of H2A-H2B and H3-H4. The predicted amino acid sequences of S. pombe histone H2As, H3s and H4s were identical except for three residue changes in H2As. Compared with those os S. cerevisiae and human, variable residues were clustered near the NH2- and COOH-terminal regions of H2A and H2B. Sequence homologies to the two organisms were roughly the same in H2A (79-83%), H3 (92-93%) and H4 (91%), but differed in H2B (82% to S. cerevisiae and 68% to human). The coding sequences in pairs of S. pombe histone genes were divergently directed. A 17-bp long highly homologous sequence (AACCCT box) that had internal 6-bp direct repeats was present in the intergene spacer sequences or in the 5' upstream region of all the cloned histone genes. A possible regulatory role of the common upstream sequence for histone gene expression is discussed.  相似文献   

9.
The nucleotide sequence of a 2301 base pair region of Saccharomyces cerevisiae DNA containing the PHR1 gene is reported. Within this region a single open reading frame of 1695 base pairs was found; using the insertional inactivation technique it was shown that part or all of this open reading frame specifies the PHR1-encoded photolyase. The amino acid sequence of the 565 amino acid long polypeptide predicted from the PHR1 nucleotide sequence was compared to the amino acid sequence of E. coli photolyase. Overall the sequence homology was 36.5%; however, two short regions near the amino terminus as well as the carboxy-terminal 150 amino acids display significantly greater sequence homology. The presence of these strongly conserved regions suggests that the yeast and E. coli photolyase possess common structural and functional domains involved in substrate and/or chromophore binding.  相似文献   

10.
C Rdel  T Jupitz    H Schmidt 《Nucleic acids research》1997,25(14):2823-2827
In human cells DNA damage caused by UV light is mainly repaired by the nucleotide excision repair pathway. This mechanism involves dual incisions on both sides of the damage catalyzed by two nucleases. In mammalian cells XPG cleaves 3' of the DNA lesion while the ERCC1-XPF complex makes the 5' incision. The amino acid sequence of the human excision repair protein ERCC1 is homologous with the fission yeast Swi10 protein. In order to test whether these proteins are functional homologues, we overexpressed the human gene in a Schizosaccharomyces pombe swi10 mutant. A swi10 mutation has a pleiotropic effect: it reduces the frequency of mating type switching (a mitotic transposition event from a silent cassette into the expression site) and causes increased UV sensitivity. We found that the full-length ERCC1 gene only complements the transposition defect of the fission yeast mutant, while a C-terminal truncated ERCC1 protein also restores the DNA repair capacity of the yeast cells. Using the two-hybrid system of Saccharomyces cerevisiae we show that only the truncated human ERCC1 protein is able to interact with the S . pombe Rad16 protein, which is the fission yeast homologue of human XPF. This is the first example yet known that a human gene can correct a yeast mutation in nucleotide excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号