首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Escherichia coli , EnvZ senses changes in the osmotic conditions of the growth environment and controls the phosphorylated state of the regulatory protein, OmpR. OmpR-phosphate regulates the expression of the porin genes, ompF and ompC . To investigate the role of the periplasmic domain of EnvZ in sensing of osmolarity signals, portions of this domain were deleted. Cells containing the EnvZ mutant proteins were able to regulate normally the production of OmpF and OmpC in response to changes in osmolarity. The periplasmic domain of EnvZ was also replaced with the non-homologous periplasmic domain of the histidine kinase PhoR of Bacillus subtilis . Osmoregulation of OmpF and OmpC production in cells containing the PhoR–EnvZ hybrid protein was indistinguishable from that in cells containing wild-type EnvZ. Identical results were obtained with an envZ – pta/ack strain, which could not synthesize acetyl phosphate. Thus, acetyl phosphate was not involved in the regulation of ompF and ompC observed in this study. These results indicate that the periplasmic domain of EnvZ is not essential for sensing of osmolarity signals.  相似文献   

2.
The ompB operon of Vibrio cholerae 569B has been cloned and fully sequenced. The operon encodes two proteins, OmpR and EnvZ, which share sequence identity with the OmpR and EnvZ proteins of a variety of other bacteria. Although the order of the ompR and envZ genes of V. cholerae is similar to that of the ompB operon of E. coli, S. typhimurium and X. nematophilus, the Vibrio operon exhibits a number of novel features. The structural organisation and features of the V. cholerae ompB operon are described.  相似文献   

3.
4.
Analysis of suppressors that alleviate the acute envelope stress phenotype of a Δ bamB Δ degP strain of Escherichia coli identified a novel protein MzrA and pleiotropic envZ mutations. Genetic evidence shows that overexpression of MzrA – formerly known as YqjB and EcfM – modulates the activity of EnvZ/OmpR similarly to pleiotropic EnvZ mutants and alter porin expression. However, porin expression in strains devoid of MzrA or overexpressing it is still sensitive to medium osmolarity, pH and procaine, all of which modulate EnvZ/OmpR activities. Thus, MzrA appears to alter the output of the EnvZ/OmpR system but not its ability to receive and respond to various environmental signals. Localization and topology experiments indicate that MzrA is a type II membrane protein, with its N-terminus exposed in the cytoplasm and C-terminus in the periplasm. Bacterial two-hybrid experiments determined that MzrA specifically interacts with EnvZ but not with OmpR or the related membrane sensor kinase, CpxA. This and additional genetic and biochemical evidence suggest that the interaction of MzrA with EnvZ would either enhance EnvZ's kinase activity or reduce its phosphatase activity, thus elevating the steady state levels of OmpR∼P. Furthermore, our data show that MzrA links the two-component envelope stress response regulators, CpxA/CpxR and EnvZ/OmpR.  相似文献   

5.
EnvZ undergoes autophosphorylation at His243 and subsequently transfers the phosphate group to OmpR. EnvZ also possesses an OmpR-phosphate phosphatase activity. We examined the role of His243 in the phosphatase function by replacing His with either Val, Tyr, Ser, Asp, or Asn. EnvZH243V and EnvZH243Y were both shown to possess phosphatase activity in vitro. In addition, the mutant proteins were able to reduce the high level of OmpR-phosphate present in the envZ473 strain. These results indicate that His243 of EnvZ is not essential for stimulating the dephosphorylation of OmpR-phosphate.  相似文献   

6.
7.
Abstract We have isolated a set of Tn 10 -generated deletions starting from the distal end of the ompR envZ operon of Escherichia coli K12. Most of the deletions removed both ompR and envZ genes or ended in ompR . These deletions exhibited an OmpC OmpF phenotype. One deletion removed only part of envZ and the strain was phenotypically OmpC OmpF+/−. This deletion of the distal part of envZ did not affect osmoregulation of ompC . However, ompF osmoregulation appeared reversed. High osmolarity in the growth medium resulted in production of OmpF close to the wild-type level.  相似文献   

8.
9.
Summary
The Escherichia coli regulatory proteins, EnvZ and OmpR, are crucially involved in expression of the outer membrane proteins OmpF/OmpC in response to the medium osmolarity. The EnvZ protein is presumably a membrane-located osmotic sensor (or signal transducer), which exhibits both kinase and phosphatase activities specific for the OmpR protein. To examine the functional importance of the membrane-spanning segments (named TM1 and TM2) of EnvZ molecules in transmembrane signalling, a set of EnvZ mutants, each having amino acid substitutions within the membrane-spanning regions, was characterized in terms of both their in vivo phenotype and in vitro catalytic activities. One of them, characterized further, has an amino acid change (Pro-41 to Ser or Leu) In TM1, and appeared to be defective in its phosphatase activity but not in its kinase activity. This EnvZ mutant conferred a phenotype of OmpF/OmpC-constitutive. For this EnvZ(P41S or P41L) mutant, a set of intragenic suppressors, each exhibiting a wild-type phenotype of OmpF+/OmpC+, was isolated. These suppresor mutants were revealed to have an additional amino acid change within either TM1 or TM2. Furthermore, they exhibited restored phosphatase activity (i.e., both kinase+ and phosphatase+ activities). It was further demonstrated that one of the suppressors, EnvZ(Arg-180 to Trp in TM2), was able to suppress the defects in both the in vivo phenotype and the in vitro catalytic activities caused by EnvZ(P41S), through intermolecular complementation. These results are best interpreted as meaning that an intimate intermolecular interaction between the membrane–spanning segments of EnvZ is crucial for transmembrane signalling per se in response to an external osmotic stimulus.  相似文献   

10.
Previously, the transfer of the phosphoryl group between the EnvZ and OmpR proteins, which are involved in activation of the ompF and ompC genes in response to the medium osmolarity, has been demonstrated in vitro. In this study, we characterized mutant EnvZ and OmpR proteins in terms of their in vitro phosphorylation and dephosphorylation. The proteins isolated from the mutants, envZ11 and ompR3, were found to be defective in seemingly the same aspect, i.e. OmpR dephosphorylation. The protein isolated from the ompR77 mutant, which is a suppressor mutant specific for envZ11, was found to be defective in another aspect, i.e. OmpR phosphorylation. These results imply that the phosphotransfer reactions observed in vitro play roles in the mechanism underlying the osmoregulatory expression of the ompF and ompC genes in vivo. We provide evidence that the EnvZ protein is involved not only in OmpR phosphorylation but also in OmpR dephosphorylation.  相似文献   

11.
We show that inactivation of envZ, the gene encoding the histidine kinase sensor protein, EnvZ, of Xenorhabdus nematophilus, affected the production of several outer membrane proteins (Opns). X. nematophilus produced five major Opns during exponential growth. Insertional inactivation of envZ led to a decrease in the production of OpnP, the OmpF-like pore-forming protein which constitutes approximately 50% of the total outer membrane protein in X. nematophilus. OpnA production was also reduced, while the remaining Opns were produced normally. During the transition to stationary phase, three new outer membrane proteins, OpnB, OpnS, and OpnX, were induced in the wild-type strain. The envZ-minus strain, ANT1, did not produce OpnB and OpnX, while OpnS was induced at markedly reduced levels. These results suggest that EnvZ was required for the high-level production of OpnP during exponential growth and may be involved in the production of OpnB, OpnS, and OpnX during stationary-phase growth. We also show that ANT1 was more pathogenic than the wild-type strain when as few as five cells were injected into the hemolymph of the larval stage of the tobacco hornworm (Manduca sexta). The larvae died before significant numbers of bacteria were detectable in the hemolymph. These results are discussed in relation to the role of EnvZ in the life cycle of X. nematophilus.  相似文献   

12.
Expression of the Escherichia coli outer membrane porins, OmpC and OmpF, is regulated in response to changes in the medium osmolarity through the functions of the regulatory factors, EnvZ and OmpR. A 3.0 kilobase pair DNA fragment cloned from E. coli is able phenotypically to suppress the defect in ompC and ompF expression caused by an envZ deletion mutation, provided that a certain gene located in this fragment is expressed on a high copy-number plasmid. Nucleotide sequencing revealed that the putative gene encodes a protein of 102,452 Da. The deduced amino acid sequence of the protein shows a high degree of homology to those of both EnvZ and OmpR, i.e. it contains both a 'sensory kinase domain' and a 'response regulator domain' in its primary amino acid sequence. The protein identified in this study is probably a novel member of the homologous family of proteins involved in bacterial adaptive responses. Hence, the gene encoding this novel sensor-regulator protein was designated as barA (bacterial adaptive responses) and mapped at 60 min on the E. coli genetic map. The BarA protein in isolated membranes was demonstrated in vitro to undergo phosphorylation in the presence of ATP.  相似文献   

13.
The EnvZ protein is presumably a membrane-located osmotic sensor which is involved in expression of the ompF and ompC genes in Escherichia coli. Previously, we developed an in vitro method for analyzing the intact form of the EnvZ protein located in isolated cytoplasmic membranes, and demonstrated that this particular form of the EnvZ protein exhibits the ability not only as to OmpR phosphorylation but also OmpR dephosphorylation. In this study, to gain an insight into the structural and functional importance of the putative periplasmic domain of the EnvZ protein, a set of mutant EnvZ proteins, which lack various portions of the periplasmic domain, were characterized in terms of not only their in vivo osmoregulatory phenotypes but also in vitro EnvZ-OmpR phosphotransfer reactions. It was revealed that these deletion mutant EnvZ proteins are normally incorporated into the cytoplasmic membrane. Cells harboring these mutant EnvZ proteins showed a pleiotropic phenotype, namely, OmpF- Mal- LamB- PhoA-, and produced the OmpC protein constitutively irrespective of the medium osmolarity. It was also suggested that all of these mutant EnvZ proteins were defective in their in vitro OmpR dephosphorylation ability, while their OmpR phosphorylation ability remained unaffected. These results imply the functional importance of the periplasmic domain of the EnvZ protein for modulation of the kinase/phosphatase activity exhibited by the cytoplasmic domain in response to an environmental osmotic stimulus.  相似文献   

14.
15.
The Escherichia coli EnvZ-OmpR regulatory system is a paradigm of intracellular signal transduction mediated by the well-documented phosphotransfer mechanism, by which the expression of the major outer membrane proteins, OmpC and OmpF, is regulated in response to the medium osmolarity. Although it is clear that the EnvZ histidine(His)-kinase is the major player in the phosphorylation of OmpR, it has been assumed for some time that there may be an alternative phospho-donor(s) that can phosphorylate OmpR under certain in vitro and in vivo conditions. In this study, to address this long-standing issue, extensive genetic studies were done with certain mutant alleles, including delta envZ, delta(ackA-pta), and delta sixA, as well as delta ompR. Here, for the first time, genetic evidence is provided that, in addition to EnvZ, acetyl phosphate and an as yet unidentified sensor His-kinase can serve as alternative in vivo phospho-donors for OmpR, even in the envZ+ background. A model for the alternative phosphotransfer signaling pathway involved in the phosphorylation of OmpR is proposed.  相似文献   

16.
EnvZ and OmpR are the sensor and response regulator proteins of a two-component system that controls the porin regulon of Escherichia coli in response to osmolarity. Three enzymatic activities are associated with EnvZ: autokinase, OmpR kinase, and OmpR-phosphate (OmpR-P) phosphatase. Conserved histidine-243 is critical for both autokinase and OmpR kinase activities. To investigate its involvement in OmpR-P phosphatase activity, histidine-243 was mutated to several other amino acids and the phosphatase activity of mutated EnvZ was measured both in vivo and in vitro. In agreement with previous reports, we found that certain substitutions abolished the phosphatase activity of EnvZ. However, a significant level of phosphatase activity remained when histidine-243 was replaced with certain amino acids, such as tyrosine. In addition, the phosphatase activity of a previously identified kinase- phosphatase+ mutant was not abolished by the replacement of histidine-243 with asparagine. These data indicated that although conserved histidine-243 is important for the phosphatase activity, a histidine-243-P intermediate is not required. Our data are consistent with a previous model that proposes a common transition state with histidine-243 (EnvZ) in close contact with aspartate-55 (OmpR) for both OmpR phosphorylation and dephosphorylation. Phosphotransfer occurs from histidine-243-P to aspartate-55 during phosphorylation, but water replaces the phosphorylated histidine side chain leading to hydrolysis during dephosphorylation.  相似文献   

17.
18.
19.
20.
The regulatory proteins OmpR and EnvZ are both required to activate expression of the genes for the major outer membrane porin proteins, OmpF and OmpC, of Escherichia coli K-12. Here we show that OmpR, under certain conditions, could activate porin expression in the complete absence of EnvZ. In addition, the pleiotropic phenotypes conferred by a particular envZ mutation (envZ473) required the presence of functional OmpR protein. These results lead us to conclude that EnvZ and OmpR act in sequential fashion to activate porin gene expression; i.e., EnvZ modifies or in some way directs OmpR, which in turn acts at the appropriate porin gene promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号