首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

2.
The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free‐choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual‐choice Y‐tube olfactometry experiments, D. rapae females discriminated between B. brassicae‐infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.  相似文献   

3.
The warty cabbage Bunias orientalis is an invasive pest in much of central Europe, including much of Germany since the 1980s, whereas in other countries, such as The Netherlands, it is a less common exotic species. Here, healthy larvae of Mamestra brassicae, which has been found feeding on B. orientalis plants in Germany, and larvae parasitized by one of its major larval endoparasitoids Microplitis mediator, were reared on both herbivore-induced and noninduced leaves of B. orientalis originating from single large populations growing in The Netherlands and central Germany. Herbivore performance was less negatively affected than parasitoid performance by differences in plant quality. Development times in both M. brassicae and Mi. mediator were shorter on Dutch than German plants and also shorter on noninduced than induced plants. Moreover, survival and body size of the parasitoid was more strongly affected by plant population and induction than survival of healthy M. brassicae. Chemical analyses of defensive secondary metabolites [glucosinolates (GS)] revealed that concentrations of the major GS sinalbin were constitutively expressed in German plants whereas they were induced in Dutch plants. However, in separate feeding bioassays in which preference for induced and noninduced leaves was compared separately, L3 instars of M. brassicae preferred noninduced German plants over Dutch plants but induced Dutch plants over German plants, revealing that changes in primary metabolites or an unidentified non-GS compound mediates population-related differences in plant quality. The results reveal asymmetric effects of plant quality in exotic plants on organisms in the second and third trophic level.  相似文献   

4.
The study investigates differences in the oviposition pattern of a braconid parasitoid, Cotesia glomerata (Linn.) in Pieris brassicae (Linn.) in relation to their use of different cruciferous food plants. The response of P. brassicae to superparasitism and consequences for the parasitoid were examined in order to elucidate the ecological significance of this behaviour. Female parasitoid located various crucifers and searched for host more frequently almost on all the host plants tested i.e. cabbage, cauliflower, Chinese cabbage, broccoli and radish. According to the estimated relative number of female locating hosts, cabbage was the most attractive plant for C. glomerata and total number of eggs laid in host larvae feeding on it was higher than in larvae feeding on other plants. Laboratory experiments demonstrated that superparasitism reduced survivorship of P. brassicae larvae. Superparasitism lengthened parasitoid development and prolonged the feeding period of host larvae. Sex ratio and the body weight of emergent wasps correlated negatively with brood size. Despite a trade-off between maximising brood size and optimising the fitness of individual offspring, two or three ovipositions on P. brassicae larvae resulted in a greater female dry mass than did a single oviposition on the host. Thus, superparasitism might be of adaptive significance under certain circumstances, especially when host density is low and unparasitized hosts are rare in a habitat.  相似文献   

5.
Herbivore-induced plant responses not only influence the initiating attackers, but also other herbivores feeding on the same host plant simultaneously or at a different time. Insects belonging to different feeding guilds are known to induce different responses in the host plant. Changes in a plant’s phenotype not only affect its interactions with herbivores but also with organisms higher in the food chain. Previous work has shown that feeding by a phloem-feeding aphid on a cabbage cultivar facilitates the interaction with a chewing herbivore and its endoparasitoid. Here we study genetic variation in a plant’s response to aphid feeding using plants originating from three wild Brassica oleracea populations that are known to differ in constitutive and inducible secondary chemistry. We compared the performance of two different chewing herbivore species, Plutella xylostella and M. brassicae, and their larval endoparasitoids Diadegma semiclausum and M. mediator, respectively, on plants that had been infested with aphids (Brevicoryne brassicae) for 1 week. Remarkably, early infestation with B. brassicae enhanced the performance of the specialist P. xylostella and its parasitoid D. semiclausum, but did not affect that of the generalist M. brassicae, nor its parasitoid M. mediator. Performance of the two herbivore–parasitoid interactions also varied among the cabbage populations and the effect of aphid infestation marginally differed among the three populations. Thus, the effect of aphid infestation on the performance of subsequent attackers is species specific, which may have concomitant consequences for the assembly of insect communities that are naturally associated with these plants.  相似文献   

6.
7.
Natural populations of wild cabbage (Brassica oleracea) show significant qualitative diversity in heritable aliphatic glucosinolates, a class of secondary metabolites involved in defence against herbivore attack. One candidate mechanism for the maintenance of this diversity is that differential responses among herbivore species result in a net fitness balance across plant chemotypes. Such top-down differential selection would be promoted by consistent responses of herbivores to glucosinolates, temporal variation in herbivore abundance, and fitness impacts of herbivore attack on plants varying in glucosinolate profile. A 1-year survey across 12 wild cabbage populations demonstrated differential responses of herbivores to glucosinolates. We extended this survey to investigate the temporal consistency of these responses, and the extent of variation in abundance of key herbivores. Within plant populations, the aphid Brevicoryne brassicae consistently preferred plants producing the glucosinolate progoitrin. Among populations, increasing frequencies of sinigrin production correlated positively with herbivory by whitefly Aleyrodes proletella and negatively with herbivory by snails. Two Pieris butterfly species showed no consistent response to glucosinolates among years. Rates of herbivory varied significantly among years within populations, but the frequency of herbivory at the population scale varied only for B. brassicae. B. brassicae emerges as a strong candidate herbivore to impose differential selection on glucosinolates, as it satisfies the key assumptions of consistent preferences and heterogeneity in abundance. We show that variation in plant secondary metabolites structures the local herbivore community and that, for some key species, this structuring is consistent over time. We discuss the implications of these patterns for the maintenance of diversity in plant defence chemistry.  相似文献   

8.
9.
The mechanisms through which trophic interactions between species are indirectly mediated by distant members in a food web have received increasing attention in the field of ecology of multitrophic interactions. Scarcely studied aspects include the effects of varying plant chemistry on herbivore immune defences against parasitoids. We investigated the effects of constitutive and herbivore-induced variation in the nutritional quality of wild and cultivated populations of cabbage (Brassica oleracea) on the ability of small cabbage white Pieris rapae (Lepidoptera, Pieridae) larvae to encapsulate eggs of the parasitoid Cotesia glomerata (Hymenoptera, Braconidae). Average encapsulation rates in caterpillars parasitised as first instars were low and did not differ among plant populations, with caterpillar weight positively correlating with the rates of encapsulation. When caterpillars were parasitised as second instar larvae, encapsulation of eggs increased. Caterpillars were larger on the cultivated Brussels sprouts plants and exhibited higher levels of encapsulation compared with caterpillars on plants of either of the wild cabbage populations. Observed differences in encapsulation rates between plant populations could not be explained exclusively by differences in host growth on the different Brassica populations. Previous herbivore damage resulted in a reduction in the larval weight of subsequent herbivores with a concomitant reduction in encapsulation responses on both Brussels sprouts and wild cabbage plants. To our knowledge this is the first study demonstrating that constitutive and herbivore-induced changes in plant chemistry act in concert, affecting the immune response of herbivores to parasitism. We argue that plant-mediated immune responses of herbivores may be important in the evaluation of fitness costs and benefits of herbivore diet on the third trophic level.  相似文献   

10.
The olfactory response of the parasitoid Aphidius colemani (Viereck) (Hymenoptera: Braconidae) to odours in a tritrophic system involving three cultivars of common cabbage, Brassica oleracea var capitata, characterized by different levels of susceptibility to Myzus persicae (Sulzer) (Hemiptera: Aphididae) was studied in a four‐way olfactometer. Odours influenced A. colemani response in the olfactometer to varying degrees. The magnitude of parasitoid response to odours of uninfested cabbage depended on cultivar, with Derby Day [green‐leaved, susceptible to M. persicae and the crucifer specialist, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae)] and Minicole (green‐leaved, partially resistant with known antibiosis factors for B. brassicae) preferred over Ruby Ball (red‐leaved with antixenosis factors for M. persicae and B. brassicae). The odour of the cabbage cultivar on which the parasitoid had been reared was preferred over the other cultivars. However, when provided with a choice between odours of infested plants, parasitoids did not show a significant preference for the cultivar on which they were reared. Results from the study show that parasitioids differentiated between odour of the three cultivars in dependence of their rearing history when the plant is uninfested.  相似文献   

11.
1. Interactions between two trophic levels can be very intimate, often making species dependent on each other, something that increases with specialisation. Some specialised multivoltine herbivores may depend on multiple plant species for their survival over the course of a growing season, especially if their food plants are short‐lived and grow at different times. Later generations may exploit different plant species from those exploited by previous generations. 2. Multivoltine parasitoids as well as their natural enemies must also find their hosts on different food plants in different habitats across the season. Secondary hyperparasitoid communities have been studied on cocoons of the primary parasitoid, Cotesia glomerata (Hymenoptera: Braconidae), on black mustard (Brassica nigra) – a major food plant of its host, the large cabbage white (Pieris brassicae) – which grows in mid‐summer. 3. Here, hyperparasitoid communities on C. glomerata pupal clusters were studied on an early‐season host, garlic mustard, Alliaria petiolata, over ‘time’ (one season, April–July) in six closely located ‘populations’ (c. 2 km apart), and within two different ‘areas’ at greater separation (c. 100 km apart). At the plant level, spatial effects of pupal ‘location’ (canopy or bottom) on the plant were tested. 4. Although large‐scale separation (area) did not influence hyperparasitism, sampling time and small‐scale separation (population) affected hyperparasitism levels and composition of hyperparasitoid communities. Location on the plant strongly increased proportions of winged species in the canopy and proportions of wingless species in bottom‐located pupae. 5. These results show that hyperparasitism varies considerably at the local level, but that differences in hyperparasitoid communities do not increase with spatial distance.  相似文献   

12.
1. There is an ongoing debate about the relative importance of top‐down and bottom‐up regulation of herbivore dynamics in the wild. Secondary metabolites, produced by plants, have negative effects on survival and growth of some herbivore species, causing bottom‐up regulation of population dynamics. Herbivore natural enemies may use plant secondary metabolites as cues to find their prey, but their survival and reproduction can also be influenced by the upward cascade of secondary metabolites through the food web. Thus plant chemistry might also affect herbivore populations by mediating top‐down regulation. 2. We investigated the influence of heritable variation in aliphatic glucosinolates, a class of secondary metabolites produced by Brassica plants, on the relative importance of top‐down and bottom‐up regulation of Brevicoryne brassicae (mealy cabbage aphid) colonies in natural Brassica oleracea (wild cabbage) populations. We manipulated natural enemy pressure on plants differing in their glucosinolate profiles, and monitored aphid colony growth and disperser production. 3. Aphid colony sizes were significantly smaller on plants producing sinigrin, compared with plants producing alternative aliphatic glucosinolates. Aphid natural enemy numbers correlated with aphid colony size, but there was no additional effect of the plants' chemical phenotype on natural enemy abundance. Furthermore, experimental reduction of natural enemy pressure had no effect on aphid colony size or production of winged dispersers. 4. Our results provide evidence for glucosinolate‐mediated, bottom‐up regulation of mealy cabbage aphid colonies in natural populations, but we found no indication of top‐down regulation. We emphasise that more studies of these processes should focus on tritrophic interactions in the wild.  相似文献   

13.
Because N is frequently the most limiting mineral macronutrient for plants in terrestrial ecosystems, modulating N input may have ecological consequences through trophic levels. Thus, in agro‐ecosystems, the success of natural enemies may depend not only from their herbivorous hosts but also from the host plant whose qualities may be modulated by N input. We manipulated foliar N concentrations by providing to Camelina sativa plants three different nitrogen rates (control, optimal, and excessive). We examined how the altered host‐plant nutritional quality influenced the performances of two aphid species, the generalist green peach aphid, Myzus persicae, and the specialist cabbage aphid, Brevicoryne brassicae, and their common parasitoid Diaeretiella rapae. Both N inputs led to increased N concentrations in the plants but induced contrasted concentrations within aphid bodies depending on the species. Compared to the control, plant biomass increased when receiving the optimal N treatment but decreased under the excessive treatment. Performances of M. persicae improved under the optimal treatment compared to the control and excessive treatments whereas B. brassicae parameters declined following the excessive N treatment. In no‐choice trials, emergence rates of D. rapae developing in M. persicae were higher on both optimum and excessive N treatments, whereas they remained stable whatever the treatment when developing in B. brassicae. Size of emerging D. rapae females was positively affected by the treatment only when it developed in M. persicae on the excessive N treatment. This work showed that contrary to an optimal N treatment, when N was delivered in excess, plant suitability was reduced and consequently affected negatively aphid parameters. Surprisingly, these negative effects resulted in no or positive consequences on parasitoid parameters, suggesting a buffered effect at the third trophic level. Host N content, host suitability, and dietary specialization appear to be major factors explaining the functioning of our studied system.  相似文献   

14.
Four accessions of the wild species Brassica fruticulosa Cyrillo (Brassicaceae) were studied in order to identify its tolerance and antibiosis resistance to the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae), in comparison to a widely cultivated cauliflower cultivar and a rapid cycling Brassica oleracea L. line. Antibiosis was prominent, as the insects reared on resistant accessions showed reduced individual pupal weight, total pupal weight, adult dry weight, and the longest average fly eclosion time. Host plant resistance, however, did not affect the sex ratio of adult flies. A study of the root architecture of plants with and without root fly inoculation revealed differences in the structure within B. oleracea accessions. A long main root and a high number of lateral roots appeared to be important characteristics for a Brassica type, with a higher tolerance level to cabbage root fly attack.  相似文献   

15.
1. Herbivory can change plant quality, which may have consequences for interactions between the inducing herbivore and other insect community members. 2. Studies investigating the effects of plant quality on herbivore performance often have neglected the egg stage, and instead introduced larvae onto the plant. Recently, we reported that herbivore oviposition by Pieris brassicae (Linnaeus) (Large Cabbage White Butterfly) reduced the plant quality of Brassica nigra L. (black mustard) for subsequent herbivores. 3. It remains unclear how persistent and common these plant‐mediated effects of oviposition are. Here, five species of wild Brassicaceae were used (B. nigra L., Brassica oleracea L., Sinapis arvensis L., Moricandia arvensis L., and Moricandia moricandioides Boiss). The response to oviposition by the specialist P. brassicae was determined by following the natural sequence of events: oviposition, egg, larval, and pupal development. All tested plant species are known to interact with P. brassicae in nature. Caterpillar, pupal mass, and development time on plants exposed to butterfly eggs were assessed compared with egg‐free plants. 4. It was shown that the plant‐mediated effects of oviposition are not specific for B. nigra but occur in most of the tested plant species except for M. arvensis. However, the strength of the plant‐mediated effect on caterpillar growth depended on plant species. Thus, across different members of the Brassicaceae family, oviposition can influence plant quality and has negative consequences on P. brassicae growth. Further studies are needed to assess to what extent this trait might be phylogenetically conserved.  相似文献   

16.
Herbivore populations are regulated by bottom‐up control through food availability and quality and by top‐down control through natural enemies. Intensive agricultural monocultures provide abundant food to specialized herbivores and at the same time negatively impact natural enemies because monocultures are depauperate in carbohydrate food sources required by many natural enemies. As a consequence, herbivores are released from both types of control. Diversifying intensive cropping systems with flowering plants that provide nutritional resources to natural enemies may enhance top‐down control and contribute to natural herbivore regulation. We analyzed how noncrop flowering plants planted as “companion plants” inside cabbage (Brassica oleracea) fields and as margins along the fields affect the plant–herbivore–parasitoid–predator food web. We combined molecular analyses quantifying parasitism of herbivore eggs and larvae with molecular predator gut content analysis and a comprehensive predator community assessment. Planting cornflowers (Centaurea cynanus), which have been shown to attract and selectively benefit Microplitis mediator, a larval parasitoid of the cabbage moth Mamestra brassicae, between the cabbage heads shifted the balance between trophic levels. Companion plants significantly increased parasitism of herbivores by larval parasitoids and predation on herbivore eggs. They furthermore significantly affected predator species richness. These effects were present despite the different treatments being close relative to the parasitoids’ mobility. These findings demonstrate that habitat manipulation can restore top‐down herbivore control in intensive crops if the right resources are added. This is important because increased natural control reduces the need for pesticide input in intensive agricultural settings, with cascading positive effects on general biodiversity and the environment. Companion plants thus increase biodiversity both directly, by introducing new habitats and resources for other species, and indirectly by reducing mortality of nontarget species due to pesticides.  相似文献   

17.
We studied the effect of different host plants and rearing atmosphere on life cycle of cabbage butterfly, Pieris brassicae. Insects were reared in the field (fluctuating weather) as well as in the laboratory (constant rearing conditions) on four host plants, viz. cabbage, cauliflower, knol-khol and broccoli. Significant differences were not found in the incubation and pupal period of butterfly reared on different host plants. However, larval period was found to be significantly lower on cabbage followed by knol-khol and highest on broccoli. Therefore, the developmental period (from eggs to adult) was reasonably lower on cabbage. Furthermore, inverse relationship was found in the body weight of butterfly and developmental period, where weight of full grown caterpillar and pupae was significantly higher on cauliflower and lowest on cabbage. Besides, significant differences were not found in the body weight of P. brassicae caterpillar reared under field and in the laboratory. Nevertheless, pupal weight of butterfly was significantly higher under field conditions than the laboratory conditions. Overall, the development of P. brassicae was much faster on cabbage than other hosts; but its body weight was considerably higher on cauliflower.  相似文献   

18.
Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.  相似文献   

19.
In natural populations, plants demonstrate an array of indirect and direct defence strategies that help to protect them from their herbivores and pathogens. Indirect defences include the release of odours that attract the natural enemies of herbivores, whereas direct defences may include the production of secondary compounds, allelochemicals that impair herbivore development or repel herbivore attack. Although both strategies have been well studied independently, comparatively little attention has been paid to examining the conflict that may arise between indirect and direct defences, such as when the performance of ‘recruited’ parasitoids or predators is negatively affected by plant allelochemicals. Here, we examine the growth and development of polyphagous and oligophagous folivores and their respective endoparasitoids on three crucifer species. One of the species, Brassica oleracea, was recently cultivated, whereas populations of B. nigra and Barbarea vulgaris occur naturally. Additionally, these species possess contrasting life‐history patterns and are also known to exhibit differences in secondary chemistry. The development of the generalist herbivore–parasitoid system was much more variable over the three crucifers than that exhibited by the specialists. Moreover, generalist herbivore and/or parasitoid fitness‐related traits (survival, development time, pupal, or adult size) were much more negatively affected on the wild crucifers than in the specialist association. Our results suggest that the relative importance of direct and indirect defences in plants may rest on the degree of dietary specialisation exhibited by herbivores and their natural enemies, and on the level of toxicity in the plant species under investigation.  相似文献   

20.
In plant–arthropod associations, the first herbivores to colonise a plant may directly or indirectly affect community assembly on that particular plant. Whether the order of arrival of different arthropod species further modulates community assembly and affects plant fitness remains unclear. Using wild Brassica oleracea plants in the field, we manipulated the order of arrival of early‐season herbivores that belong to different feeding guilds, namely the aphid Brevicoryne brassicae and caterpillars of Plutella xylostella. We investigated the effect of herbivore identity and order of arrival on community assembly on two B. oleracea plant populations during two growth seasons. For this perennial plant, we evaluated whether foliar herbivory also affected herbivore communities on the flowers and if these interactions affected plant seed production. Aphid infestation caused an increase in parasitoid abundance, but caterpillars modulated these effects, depending on the order of herbivore infestation and plant population. In the second growth season, when plants flowered, the order of infestation of leaves with aphids and caterpillars more strongly affected abundance of herbivores feeding on the flowers than those feeding on leaves. Infestation with caterpillars followed by aphids caused an increase in flower‐feeding herbivores compared to the reversed order of infestation in one plant population, whereas the opposite effects were observed for the other plant population. The impact on plant seed set in the first reproductive year was limited. Our work shows that the identity and arrival order of early season herbivores may have long‐term consequences for community composition on individual plants and that these patterns may vary among plant populations. We discuss how these community processes may affect plant fitness and speculate on the implications for evolution of plant defences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号