首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Cellular annexin II has been shown to specifically bind human cytomegalovirus (HCMV) and be a component of highly purified virions. In this report, we characterize the interaction of annexin II with HCMV. We found that the binding of annexin II to the HCMV envelope occurs partially through the calcium-dependent phospholipid-binding ability of annexin II since some annexin II was dissociated from virions with chelating agents. However, a substantial proportion of virion-associated annexin II was resistant to chelation, which suggested a calcium-independent interaction between annexin II and an HCMV envelope component. The search for a nonphospholipid component to account for this binding led to the discovery that HCMV glycoprotein B (gpUL55) (gB) can physically interact with annexin II. We present three lines of evidence to support the conclusion that HCMV gB can bind host cell annexin II.  相似文献   

2.
Human cytomegalovirus (HCMV), a member of the herpesvirus family, is a large complex enveloped virus composed of both viral and cellular gene products. While the sequence of the HCMV genome has been known for over a decade, the full set of viral and cellular proteins that compose the HCMV virion are unknown. To approach this problem we have utilized gel-free two-dimensional capillary liquid chromatography-tandem mass spectrometry (MS/MS) and Fourier transform ion cyclotron resonance MS to identify and determine the relative abundances of viral and cellular proteins in purified HCMV AD169 virions and dense bodies. Analysis of the proteins from purified HCMV virion preparations has indicated that the particle contains significantly more viral proteins than previously known. In this study, we identified 71 HCMV-encoded proteins that included 12 proteins encoded by known viral open reading frames (ORFs) previously not associated with virions and 12 proteins from novel viral ORFs. Analysis of the relative abundance of HCMV proteins indicated that the predominant virion protein was the pp65 tegument protein and that gM rather than gB was the most abundant glycoprotein. We have also identified over 70 host cellular proteins in HCMV virions, which include cellular structural proteins, enzymes, and chaperones. In addition, analysis of HCMV dense bodies indicated that these viral particles are composed of 29 viral proteins with a reduced quantity of cellular proteins in comparison to HCMV virions. This study provides the first comprehensive quantitative analysis of the viral and cellular proteins that compose infectious particles of a large complex virus.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) carries a variety of host proteins in addition to virus-encoded structural proteins, both in its envelope and inside the viral particle. Previous studies have reported that the HIV-1 life-cycle is affected by such virus-associated host cell surface proteins. The nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), also known as CD39, is a plasma membrane-bound ectoenzyme that hydrolyzes extracellular ATP and ADP to AMP. It has been shown that CD39 inhibits platelet function, and is thus a critical thromboregulatory molecule. We demonstrate here that host-derived CD39 is acquired by both laboratory-adapted and clinical variants of HIV-1 produced in cellular reservoirs of the virus. Moreover, purified CD39-bearing virions, but not isogenic viruses lacking CD39, display strong ATPase and ADPase activities. It is of particular interest that virions bearing this cellular enzyme can inhibit ADP-induced platelet aggregation, an effect blocked by an NTPDase inhibitor. On the basis of published and the present data on the functionality of human cellular proteins embedded within HIV-1, it can be proposed that these proteins might contribute to some of the immunologic deficiencies seen in infected individuals.  相似文献   

4.
5.
6.
Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes.  相似文献   

7.
In addition to the viral envelope (Env) proteins, host cell-derived proteins have been reported to be present in human immunodeficiency virus and simian immunodeficiency virus (SIV) envelopes, and it has been postulated that they may play a role in infection. We investigated whether the incorporation of host cell proteins is affected by the structure and level of incorporation of viral Env proteins. To compare the cellular components incorporated into SIV particles and how this is influenced by the structure of the cytoplasmic domain, we compared SIV virions with full-length and truncated Env proteins. The levels of HLA-I and HLA-II molecules were found to be significantly (15- to 25-fold) higher in virions with full-length Env than in those with a truncated Env. Virions with a truncated Env were also found to be less susceptible to neutralization by specific antibodies against HLA-I or HLA-II proteins. We also compared the level of incorporation into SIV virions of a coexpressed heterologous viral glycoprotein, the influenza virus hemagglutinin (HA) protein. We found that SIV infection of cells expressing influenza virus HA resulted in the production of phenotypically mixed SIV virions containing influenza virus HA as well as SIV envelope proteins. The HA proteins were more effectively incorporated into virions with full-length Env than in virions with truncated Env. The phenotypically mixed particles with full-length Env, containing higher levels of HA, were sensitive to neutralization with anti-HA antibody, whereas virions with truncated Env proteins and containing lower levels of HA were more resistant to neutralization by anti-HA antibody. In contrast, SIV virions with truncated Env proteins were found to be highly sensitive to neutralization by antisera to SIV, whereas virions with full-length Env proteins were relatively resistant to neutralization. These results indicate that the cytoplasmic domain of SIV Env affects the incorporation of cellular as well as heterologous viral membrane proteins into the SIV envelope and may be an important determinant of the sensitivity of the virus to neutralizing antibodies.  相似文献   

8.
Proteins associated with purified human cytomegalovirus particles.   总被引:20,自引:18,他引:2       下载免费PDF全文
C J Baldick  Jr  T Shenk 《Journal of virology》1996,70(9):6097-6105
Virion-associated proteins isolated from purified human cytomegalovirus particles (strain AD169) were used as substrates for chemical sequence analysis. Extracellular virions, noninfectious enveloped particles, and dense bodies were purified by negative viscosity-positive density gradient centrifugation, and their component proteins were separated by denaturing polyacrylamide gel electrophoresis. The deduced amino acid sequence of individual protein bands was used to identify six corresponding viral genes whose products have not previously been identified as virion constituents: UL47, UL25, UL88, UL85, UL26, and UL48.5. In addition, a 45-kDa cellular protein was identified, and the protein fragments sequenced have a high degree of amino acid identity with actin. However, antiactin monoclonal and polyclonal antibodies did not react with a specific protein in the virus preparations, suggesting that this 45-kDa protein is an immunologically distinct isoform of actin. The newly identified viral and cellular proteins were resistant to protease treatment of purified virions, suggesting that they are unlikely to be contaminants of the viral preparations.  相似文献   

9.
Dendritic cells (DCs) act as a portal for invasion by human immunodeficiency virus type-1 (HIV-1). Here, we investigated whether virion-incorporated host cell membrane proteins can affect virus replication in DC-T-cell cocultures. Using isogenic viruses either devoid of or bearing host-derived leukocyte function-associated antigen 1 (LFA-1), we showed that HIV-1 production is augmented when LFA-1-bearing virions are used compared to that for viral entities lacking this adhesion molecule. This phenomenon was observed in immature monocyte-derived DCs (IM-MDDCs) only and not in DCs displaying a mature phenotype. The increase is not due to higher virus production in responder CD4(+) T cells but rather is linked with a more important productive infection of IM-MDDCs. We provided evidence that virus-associated host LFA-1 molecules do not affect a late event in the HIV-1 life cycle but rather exert an effect on an early step in virus replication. We demonstrated that the enhancement of productive infection of IM-MDDCs that is conferred by virus-anchored host LFA-1 involves the protein kinase A (PKA) and PKC signal transduction pathways. The biological significance of this phenomenon was established by performing experiments with virus stocks produced in primary human cells and anti-LFA-1 antibodies. Together, our results indicate that the association between some virus-bound host proteins and their natural cognate ligands can modulate de novo HIV-1 production by IM-MDDCs. Therefore, the additional interactions between virus-bound host cell membrane constituents and counter receptors on the surfaces of DCs can influence HIV-1 replication in IM-MDDC-T-cell cocultures.  相似文献   

10.
Here we report the presence of a protein kinase activity associated with human immunodeficiency virus type 1 (HIV-1) particles. We observed phosphorylation of five major proteins by the endogenous protein kinase activity. Phosphoamino acid analysis revealed phosphorylated serine and threonine residues. In addition, we observed autophosphorylation of two proteins in the presence of gamma-ATP in an in-gel phosphorylation assay. These two proteins are not linked by a disulfide bond, suggesting that two different protein kinases are associated with HIV-1 virions. Our results indicate the presence of ERK2 mitogen-activated protein kinase and of a 53,000-molecular-weight protein kinase associated with virions. Moreover, the use of different HIV strains derived from T cells and promonocytic cells, as well as the use of human T-cell leukemia virus type 1 particles, demonstrates that ERK2 is strongly associated with retrovirus particles in a cell-independent manner. Exogenous substrates, such as histone proteins, and a viral substrate, such as Gag protein, are phosphorylated by virus-associated protein kinases.  相似文献   

11.
We have used a virus overlay assay to detect cellular proteins associated with human cytomegalovirus (HCMV) particles. The radiolabeled HCMV particles specifically bound to two host proteins with molecular sizes of 150 and 180 kDa. By a micro-amino-acid sequencing technique, the 180-kDa protein was identified as a human homologue of the ES130/p180 ribosome receptor (p180), which is an integral endoplasmic reticulum (ER) membrane protein possessing a very unique tandem repeat domain at its N-terminal region. The virus overlay assay using truncated p180 polypeptides revealed that HCMV binding to human p180 occurred through the N-terminal region. In HCMV-permissive cells the high level of expression of the human p180 protein was clearly observed regardless of cell type. Furthermore, we showed that p180 binds to the UL48 gene product, which is one of the predominant tegument proteins of HCMV and which is considered to be tightly associated with the capsid. The interaction between the two proteins was assumed to be specific and was observed both in vitro and in vivo. During the late phase of infection, the unique relocation of human p180 was observed, that is, to the juxtanuclear region, which appeared to be in the vicinity of the area where naked virions were frequently observed in an electron-microscopic study. Thus our data suggest that p180 interacts with the HCMV tegument, at least through pUL48, during the HCMV replication process. We discuss the possible role of the interaction between p180 and pUL48 in the intracellular transport of HCMV virions.  相似文献   

12.
Using virions harvested from 293T cells stably expressing either low or high levels of surface ICAM-1, we determined that the number of virus-embedded host ICAM-1 proteins is positively influenced by the expression level of ICAM-1 on virus producer cells. Moreover, the increase in virion-bound host cell membrane ICAM-1 led to a concomitant enhancement of virus infectivity when a T-cell-tropic strain of human immunodeficiency virus type 1 (HIV-1) was used. The phenomenon was also seen when primary human cells were infected with virions pseudotyped with the envelope protein from a macrophage-tropic HIV-1 isolate, thus ruling out any envelope-specific effect. We also observed that target cells treated with NKI-L16, an anti-LFA-1 antibody known to increase the affinity of LFA-1 for ICAM-1, were markedly more susceptible to infection with HIV-1 particles bearing on their surfaces large numbers of host-derived ICAM-1 proteins. Given that cellular activation of leukocytes is known to modify the conformational state of LFA-1 and induce ICAM-1 surface expression, it is tempting to speculate that activation of virus-infected cells will lead to the production of HIV-1 particles bearing more host ICAM-1 on their surfaces and that such progeny virions will preferentially infect and replicate more efficiently in activated cells which are prevalent in lymphoid organs.  相似文献   

13.
The human cytomegalovirus genome encodes four putative seven transmembrane domain chemokine receptor-like proteins. Although important in viral pathogenesis, little is known about the properties or functions of these proteins. We previously reported that US28 is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Here we studied the cellular distributions and trafficking of two other human cytomegalovirus chemokine receptor-like proteins, UL33 and US27, in transfected and human cytomegalovirus-infected cells. Immunofluorescence staining indicated that UL33 and US27 are located at the cell surface, although the majority of both proteins was seen in intracellular organelles located in the perinuclear region of the cell. The intracellular pools of UL33 and US27 showed overlap with markers for endocytic organelles. Antibody-feeding experiments indicated that cell surface US27 undergoes endocytosis. By immunogold labeling of cryosections and electron microscopy, UL33 was seen to localize to multivesicular bodies (MVBs or multivesicular endosomes). Electron microscopy analysis of human cytomegalovirus-infected cells showed that most virus particles wrapped individually into short membrane cisternae, although virus particles were also occasionally seen within and budding into MVBs. Electron microscopy immunolocalization of viral UL33 and US27 on ultrathin cryosections of human cytomegalovirus-infected cells showed gold particles over the membranes into which virions were wrapping, in small membrane tubules and vesicles and in MVBs. Labeling of the human cytomegalovirus glycoproteins gB and gH indicated that these proteins were also present in the same membrane structures. This first electron microscopy analysis of human cytomegalovirus assembly using immunolabeling suggests that the localization of UL33, US27 and US28 to endosomes may allow these proteins to be incorporated into the viral membrane during the final stages of human cytomegalovirus assembly.  相似文献   

14.
Preparations of density gradient-purified infectious bursal disease virus (IBDV) were found to contain full and empty icosahedral virions, type I tubules with a diameter of about 60 nm, and type II tubules 24 to 26 nm in diameter. By immunoelectron microscopy we demonstrate that virions and both types of tubular structures specifically react with anti-IBDV serum. In infected cells intracytoplasmic and intranuclear type II tubules reacted exclusively with an anti-VP4 monoclonal antibody, as did type II tubules in virion preparations. The immunofluorescence pattern with the anti-VP4 antibody correlated with electron microscopical findings. Neither purified extracellular nor intracellular virions were labeled with the anti-VP4 MAb. Our data show that the type II tubules contain VP4 and suggest that VP4 is not part of the virus particle.  相似文献   

15.
Maturation in herpesviruses initiates in the nucleus of the infected cell, with encapsidation of viral DNA to form nucleocapsids, and concludes with envelopment in the cytoplasm to form infectious virions that egress the cell. The entire process of virus maturation is orchestrated by protein-protein interactions and enzymatic activities of viral and host origin. Viral tegument proteins play important roles in maintaining the structural stability of capsids and directing the acquisition of virus envelope. Envelopment occurs at modified host membranes and exploits host vesicular trafficking. In this review, we summarize current knowledge of and concepts in human cytomegalovirus (HCMV) maturation and their parallels in other herpesviruses, with an emphasis on viral and host factors that regulate this process.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vpr and Vpx proteins are packaged into virions through virus type-specific interactions with the Gag polyprotein precursor. To examine whether HIV-1 Vpr (Vpr1) and HIV-2 Vpx (Vpx2) could be used to target foreign proteins to the HIV particle, their open reading frames were fused in frame with genes encoding the bacterial staphylococcal nuclease (SN), an enzymatically inactive mutant of SN (SN*), and chloramphenicol acetyltransferase (CAT). Transient expression in a T7-based vaccinia virus system demonstrated the synthesis of appropriately sized Vpr1-SN/SN* and Vpx2-SN/SN* fusion proteins which, when coexpressed with their cognate p55Gag protein, were efficiently incorporated into virus-like particles. Packaging of the fusion proteins was dependent on virus type-specific determinants, as previously seen with wild-type Vpr and Vpx proteins. Particle-associated Vpr1-SN and Vpx2-SN fusion proteins were enzymatically active, as determined by in vitro digestion of lambda phage DNA. To determine whether functional Vpr1 and Vpx2 fusion proteins could be targeted to HIV particles, the gene fusions were cloned into an HIV-2 long terminal repeat/Rev response element-regulated expression vector and cotransfected with wild-type HIV-1 and HIV-2 proviruses. Western blot (immunoblot) analysis of sucrose gradient-purified virions revealed that both Vpr1 and Vpx2 fusion proteins were efficiently packaged regardless of whether SN, SN*, or CAT was used as the C-terminal fusion partner. Moreover, the fusion proteins remained enzymatically active and were packaged in the presence of wild-type Vpr and Vpx proteins. Interestingly, virions also contained smaller proteins that reacted with antibodies specific for the accessory proteins as well as SN and CAT fusion partners. Since similar proteins were absent from Gag-derived virus-like particles and from virions propagated in the presence of an HIV protease inhibitor, they must represent cleavage products produced by the viral protease. Taken together, these results demonstrate that Vpr and Vpx can be used to target functional proteins, including potentially deleterious enzymes, to the human or simian immunodeficiency virus particle. These properties may be exploitable for studies of HIV particle assembly and maturation and for the development of novel antiviral strategies.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) incorporates several host proteins. Earlier studies have indicated that such foreign constituents can modulate the virus life cycle, although the potential roles that these proteins might play in the viral pathology in vivo remain unclear. In an attempt to shed light on this issue, we first exposed explants of human lymphoid tissue to isogenic viruses except for the presence or absence of host-derived ICAM-1. Incorporation of ICAM-1 alone increased HIV-1 infectivity for human tonsillar tissue cultured ex vivo. This observation was made for viruses bearing distinct coreceptor utilization profiles. Conversion of LFA-1 to a high-affinity-high-avidity state for ICAM-1 further augmented the susceptibility of human tonsillar histocultures to infection by ICAM-1-bearing virions. A more massive depletion of CD4(+) T lymphocytes was seen with X4 ICAM-1/POS viruses than with isogenic ICAM-1/NEG virions. Exposure of X4 and R5 primary isolates of HIV-1 to a blocking anti-ICAM-1 antibody resulted in a decrease of virus infection. Finally, X4 and R5 virions derived from a natural human lymphoid tissue microenvironment incorporated high levels of ICAM-1. Altogether, these results indicate that the incorporation of host ICAM-1 can significantly modulate the biology of HIV-1 in a cellular milieu recognized as the major site of replication in vivo and suggest that host proteins found in HIV-1 particles may participate in the pathogenesis of this disease.  相似文献   

18.
19.
While host proteins incorporated into virions during viral budding from infected cell are known to play essential roles in multiple process of the life cycle of progeny virus, these characteristics have been largely neglected in studies on rabies virus(RABV). Here, we purified the RABV virions with good purity and integrity, and analyzed their proteome by nano LC–MS/MS, followed by the confirmation with immunoblot and immuno-electronic microscopy. In addition to the 5 viral proteins, 49 cellular proteins were reproducibly identified to be incorporated into matured RABV virions. Function annotation suggested that 24 of them were likely involved in virus replication. Furthermore, cryo-EM was employed to observe the purified RABV virions, generating high-resolution pictures of the bullet-shaped virion structure of RABV. This study has provided new insights into the host proteins composition in RABV virion and shed the light for further investigation on molecular mechanisms of RABV infection, as well as the discovery of new anti-RABV therapeutics.  相似文献   

20.
Host cell components, including protein kinases such as ERK-2/mitogen-activated protein kinase, incorporated within human immunodeficiency virus type 1 (HIV-1) virions play a pivotal role in the ability of HIV to infect and replicate in permissive cells. The present work provides evidence that the catalytic subunit of cAMP-dependent protein kinase (C-PKA) is packaged within HIV-1 virions as demonstrated using purified subtilisin-digested viral particles. Virus-associated C-PKA was shown to be enzymatically active and able to phosphorylate synthetic substrate in vitro. Suppression of virion-associated C-PKA activity by specific synthetic inhibitor had no apparent effect on viral precursor maturation and virus assembly. However, virus-associated C-PKA activity was demonstrated to regulate HIV-1 infectivity as assessed by single round infection assays performed by using viruses produced from cells expressing an inactive form of C-PKA. In addition, virus-associated C-PKA was found to co-precipitate with and to phosphorylate the CAp24gag protein. Altogether our results indicate that virus-associated C-PKA regulates HIV-1 infectivity, possibly by catalyzing phosphorylation of the viral CAp24gag protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号