首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
RNAi技术研究新进展   总被引:3,自引:1,他引:2  
RNA干扰(RNAi)是指双链RNA在细胞内特异性地诱导同源互补的mRNA降解,从而阻断相应基因表达的现象。RNAi在生物界中广泛存在,其发生过程主要分为3个阶段:起始阶段、扩增阶段和效应阶段。它在维持基因组稳定、基因表达调控等方面发挥重要生物学作用。随着人们对RNAi研究的不断深入,目前RNA干扰技术作为基因沉默的一个工具,已被广泛用于基因功能研究、疾病的靶点治疗和寻找新的药物靶标等方面的研究。  相似文献   

2.
RNA干扰技术在哺乳动物中的应用   总被引:12,自引:0,他引:12  
RNA干扰(RNAi)是生物界普遍存在的一种抵御外来基因和病毒感染的进化保守机制.RNAi是由双链RNA触发的转录后基因沉默机制,具有序列特异性,在哺乳动物细胞中,RNAi由21~23个核苷酸组成的双链RNA引发.小干扰RNA(siRNA)可以在体外合成或通过表达载体在哺乳动物细胞内合成.由于RNAi技术具有快速、简单和特异性强等特点,在基因功能研究、抗病毒治疗和抗肿瘤治疗等方面有广泛的应用前景.  相似文献   

3.
RNA干扰(RNAi)是由小干扰RNA(siRNA)引发的生物细胞内同源基因的转录后基因沉默(PTGS)现象,是一种古老的生物抵抗外在感染的防御机制。RNAi因其在维持基因组稳定、调控基因表达和保护基因组免受外源核酸侵入等方面发挥的重要作用,已被广泛用于探索基因功能、基因治疗和新药的研发。外源导入siRNA引发的RNAi可以特异性抑制病毒的复制与感染,为抗病毒感染治疗开辟了一条新的途径。  相似文献   

4.
植物系统性RNAi的研究进展   总被引:1,自引:0,他引:1  
RNAi作为反向遗传学手段,以其序列特异性、高效性等特点,在植物基因功能验证、抗病和品种改良等方面发挥了积极作用,RNAi的系统性也同时受到研究者的广泛关注.系统性RNAi(systemic RNA in-terference)传统定义是指沉默信号从一个细胞或一种组织,传递到另外的细胞或同一个体的另外组织中去的现象.本文主要综述植物基因工程研究中应用系统性RNAi技术的研究现状,总结了植物系统性RNAi的特征及沉默效应的抑制.对植物系统性RNAi的研究方法与应用,特别是在植物抗性研究和遗传改良等方面作了重点介绍,并分析了技术存在的限制因素.  相似文献   

5.
RNA干扰(RNAinterference,RNAi)是一种真核生物体内由特定双链RNA介导的转录后基因沉默现象。近年来,RNAi的作用机制已基本阐明,并广泛的应用于基因功能的研究。现对RNAi在哺乳动物卵母细胞及早期胚胎研究中的作用特点、应用情况、存在问题等几方面进行综述。  相似文献   

6.
RNA干涉(RNAi)是由dsRNA引起的序列特异性基因沉默现象,在动、植物和真菌中广泛存在并被证实.具有的特异性、稳定性、高效、快速以及不改变基因组的遗传组成等特性,为RNAi这一新技术在植物的遗传改良等方面提供了一个强有力的手段.重点从RNAi的发现与淀粉品质相关的淀粉合成酶及其利用RNAi在提高直链淀粉含量、降低直链淀粉含量等品质改良研究方面进行了回顾并对其存在的问题作了初步探讨.  相似文献   

7.
RNA干扰与技术   总被引:3,自引:0,他引:3  
RNA干扰(RNA interference,RNAi)是由双链RNA诱导的、序列特异的基因沉默机制。它是自然存在于植物、线虫和果蝇中抵抗外来基因(包括病毒、转座子)入侵的方式。在哺乳动物细胞中,能够人工诱导RNA干扰,沉默有同源序列基因表达。这一新技术具有特异性、高效性。因此,正被用来研究人类基因组的功能、肿瘤和抗病毒感染等。  相似文献   

8.
RNA干扰(RNAi)是由双链RNA(dsRNA)介导的序列特异的基因沉默现象,RNAi效应具有高特异性和高效性的显著特征,能够在细胞和子代间传递.除诱导同源序列mRNA降解或阻止其翻译而使目的基因表达受阻的转录后基因沉默外,RNA干扰可通过组蛋白甲基化影响染色质结构、通过DNA甲基化在转录水平调节基因表达,在翻译水平调节机体发育,并作为基因组的免疫系统,使转座因子或重复序列区域异染色质化,有效抑制了转座子和重复序列之间的同源重组对基因组可能造成的破坏,使生物基因组在长期进化过程中能保持结构的完整性和遗传的连续性. RNA干扰以阻抑基因的表达来模拟基因敲除技术,为反向遗传学研究基因功能提供了一种快速和简便的方法.RNA干扰技术日趋成熟和完善,为人们迅速准确地分析基因功能提供了极为有用的工具,同时在临床应用和治疗肿瘤和癌症等方面也有着巨大的应用前景.  相似文献   

9.
RNA干涉及其在棉花研究中的应用   总被引:1,自引:0,他引:1  
RNA干涉(TNA interference,RNAi)技术是一门新兴的基因阻断技术,可通过将外源双链RNA导入细胞介导同源靶基因mRNA序列的降解,使靶基因表达沉默,是一种转录后的基因沉默现象.目前,RNA干涉技术在植物研究中已经得到广泛应用.本文简介了植物的RNA干涉研究及RNAi表达载体的构建,综述了RNAi在棉花基因功能和功能基因组学研究、棉花品质性状的遗传改良和棉花的抗虫抗病研究中的应用进展及其在棉花研究中存在的主要问题和应用前景.  相似文献   

10.
赵轩  邓竞  马潇雨  朱旭东  张萍 《微生物学报》2022,62(5):1656-1668
RNA干扰(RNA interference,RNAi)是一种保守的真核生物基因调控机制,它利用小的非编码RNA介导转录/转录后的基因沉默。虽然部分真菌丢失了RNAi系统,但随着对真菌RNAi机制研究的增加,越来越多的证据表明,真菌的RNAi系统不但参与维持基因组完整性,其在调节真菌生长发育、介导异染色质组装、促进着丝粒进化、调节真菌耐药性与毒力等方面也具有重要作用。本文主要对真菌中RNAi的生物学功能进行综述,以期为进一步深入研究真菌RNA干扰机制提供一定的理论与研究基础。  相似文献   

11.
RNA Interference: Biology, Mechanism, and Applications   总被引:16,自引:0,他引:16       下载免费PDF全文
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.  相似文献   

12.
RNA interference: biology, mechanism, and applications.   总被引:44,自引:0,他引:44  
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.  相似文献   

13.
14.
15.
16.
RNA干扰(RNA interference,RNA i)是由双链RNA(doub le-stranded RNA,dsRNA)引发的转录后基因沉默(posttran-scridptional gene silenc ing,PTGS)。dsRNA经D icer酶降解成21-23nt的siRNA,并以其为模板,特定位点、特定间隔降解与之序列相应的mRNA。随着RNA i机制的深入研究与广泛应用,目前该技术已经普遍应用于细胞周期研究中,在阐明各种调控机制的同时也为基因治疗提供了新靶点。  相似文献   

17.
转录后基因沉默的机制及其应用   总被引:13,自引:1,他引:12  
确定导致转录后基因沉默的原因,探索在转基因植物研究中避免基因沉默的对策。方法是将转基因沉默分为转录水平的沉默和转录后水平的沉默,分别对RNA阈值模型、异位配对和异常RNA模型、双连RNA模型等几种导致转录后基因沉默模型的分析。结果确定了转基因沉默抑制现象和转录后基因沉默的形成机制,以及转录后基因沉默理论和实践意义。提出了利用RNAi等技术进行基因功能鉴定和利用基因沉默进行病毒防治的策略。  相似文献   

18.
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double-stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene-specific therapeutics.  相似文献   

19.
The large number of candidate genes identified by modern high-throughput technologies require efficient methods for generating knockout phenotypes or gene silencing in order to study gene function. RNA interference (RNAi) is an efficient method that can be used for this purpose. Effective gene silencing by RNAi depends on a number of important parameters, including the dynamics of gene expression and the RNA dose. Using mouse hepatoma cells, we detail some of the principal characteristics of RNAi as a tool for gene silencing, such as the RNA dose level, RNA complex exposure time, and the time of transfection relative to gene induction, in the context of silencing a green fluorescent protein reporter gene. Our experiments demonstrate that different levels of silencing can be attained by modulating the dose level of RNA and the time of transfection and illustrate the importance of a dynamic analysis in designing robust silencing protocols. By quantifying the kinetics of RNAi-based gene silencing, we present a model that may be used to help determine key parameters in more complex silencing experiments and explore alternative gene silencing protocols.  相似文献   

20.
Invasive nucleic acids such as transposons and viruses usually exhibit aberrant characteristics, e.g., unpaired DNA or abnormal double-stranded RNA. Organisms employ a variety of strategies to defend themselves by distinguishing self and nonself substances and disabling these invasive nucleic acids. Furthermore, they have developed ways to remember this exposure to invaders and transmit the experience to their descendants. The mechanism underlying this inheritance has remained elusive. Recent research has shed light on the initiation and maintenance of RNA-mediated inherited gene silencing. Small regulatory RNAs play a variety of crucial roles in organisms, including gene regulation, developmental timing, antiviral defense, and genome integrity, via a process termed as RNA interference (RNAi). Recent research has revealed that small RNAs and the RNAi machinery are engaged in establishing and promoting transgenerational gene silencing. Small RNAs direct the RNAi and chromatin modification machinery to the cognate nucleic acids to regulate gene expression and epigenetic alterations. Notably, these acquired small RNAs and epigenetic changes persist and are transmitted from parents to offspring for multiple generations. Thus, RNAi is a vital determinant of the inheritance of gene silencing and acts as a driving force of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号