首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 122 毫秒
1.
The present study demonstrates that desacetyllevonantradol, a synthetic cannabinoid analog, reduces cyclic AMP levels in rat striatal slices stimulated with vasoactive intestinal peptide or SKF 38393, a D1-dopamine agonist. Desacetyllevonantradol and the D2 agonist LY 171555 both inhibited D1-stimulated cyclic AMP accumulation in the striatum. Spiperone, a specific D2-dopamine antagonist, fully reversed the inhibitory effect of LY 171555 but not that of desacetyllevonantradol, indicating that this cannabinoid response is not occurring through a D2-dopaminergic mechanism. Morphine also inhibited cyclic AMP accumulation in striatal slices stimulated with either SKF 38393 or vasoactive intestinal peptide. Naloxone, an opioid antagonist, fully reversed the effect of morphine but not that of desacetyllevonantradol, indicating that cannabinoid drugs are not acting via a mechanism involving opioid receptors. The response to maximally effective concentrations of desacetyllevonantradol was not additive to that of maximally effective concentrations of either morphine or LY 171555, suggesting that dopaminergic, opioid, and cannabinoid receptors may be present on the same populations of cells.  相似文献   

2.
Chronic exposure to CP55,940 produced a significant down-regulation of cannabinoid receptors in the striatum, cortex, hippocampus, and cerebellum of rat brain. At 24 h after SR141716-precipitated withdrawal, we observed a tendency to return to basal levels in the striatum and cortex, whereas the specific binding remained lower in the hippocampus and cerebellum. When we surveyed cannabinoid receptor-activated G proteins, in chronic CP55,940-treated rats the guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding assay revealed a decrease of activated G proteins in the striatum, cortex, and hippocampus, whereas no significant changes were seen in the cerebellum. At 24 h after the SR141716-precipitated withdrawal, [(35)S]GTPgammaS binding increased compared with that of rats chronically exposed to CP55,940, attaining the control level except for cerebellum, where we observed a trend to overcome the control amounts. Concerning the cyclic AMP (cAMP) cascade, which represents the major intracellular signaling pathway activated by cannabinoid receptors, in the cerebral areas from rats chronically exposed to CP55,940 we found alteration in neither cAMP levels nor protein kinase A activity. In the brain regions taken from CP55, 940-withdrawn rats, we only observed a significant up-regulation in the cerebellum. Our findings suggest that receptor desensitization and down-regulation are strictly involved in the development of cannabinoid tolerance, whereas alterations in the cAMP cascade in the cerebellum could be relevant in the mediation of the motor component of cannabinoid abstinence.  相似文献   

3.
Atrial natriuretic factor (ANF)-responsive areas in rat brain were examined by measuring ANF-stimulated cyclic GMP production in rat brain slice preparations. The medulla oblongata, thalamus, and pituitary gland responded most sensitively, the septum, hypothalamus, pons, midbrain and olfactory bulb responded moderately, but neocortex, cerebellum, striatum and hippocampus were unresponsive to ANF. The most responsive regions in spontaneously hypertensive rats brains showed 2 to 5 times higher cyclic GMP production than those from the control Wistar-Kyoto rats. These findings provide evidence for biological action of ANF on brain tissues, and indicate the action of ANF produced in the brain.  相似文献   

4.
—The accumulation of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) was studied in cell-free homogenates of guinea pig brain. Homogenates, prepared in Krebs-Ringer buffer, responded markedly to the addition of neurohormones with an increased rate of cyclic AMP synthesis; preparations from cerebellum, cerebral cortex, and hippocampus responded to a degree approximating that achieved with slices of these areas of guinea pig brain. Adenylatc cyclase activity was seen only when cyclic AMP was measured by a [3H]adenine prelabelling technique or when total cyclic AMP was measured by radioimmunoassay; [32P]ATP did not serve as a substrate for this preparation of the enzyme. The adenylate cyclase was paniculate and required a Krebs Ringer buffer; use of tris, or tris with Mg2+ and Ca2+, resulted in a preparation totally devoid of hormonal stimulation. Digestion by purified beef heart cyclic nucleotide phosphodiesterase, Dowex chromatography, solubility in Ba(OH)2-ZnSO4 mixtures, and two thin layer chromatographic systems demonstrated that the product of the hormonally stimulated adenylate cyclase preparation was cyclic AMP. The selectivity of hormonal stimulation and the adrenergic character of the hormonal receptors from different brain areas were maintained in the cell-free preparation. However, simultaneous stimulation with two different neurohormones resulted in additive responses, rather than in the potentiation observed in preparations of slices of brain.  相似文献   

5.
Histamine stimulated the enzymatic synthesis of phosphatidylcholine from phosphatidylethanolamine in crude synaptic membranes of rat brain containing the methyl donor S-adenosyl-L-methionine (SAM). In the presence of, but not in the absence of SAM, histamine increased cyclic AMP accumulation at the concentrations that stimulate phospholipid methylation. S-Adenosyl-L-homocysteine, an inhibitor of phospholipid methyltransferases, inhibited histamine-stimulated phospholipid methylation and histamine-induced cyclic AMP accumulation in the presence of SAM in a concentration-dependent manner. Histamine-induced [3H]methyl incorporation into phospholipids exhibited a marked regional heterogeneity in rat brain in the order of cortex greater than medulla oblongata greater than hippocampus greater than striatum greater than midbrain greater than hypothalamus. The regional distribution of histamine-induced cyclic AMP accumulation exactly paralleled histamine-stimulated [3H]methyl incorporation in rat brain. Histamine-induced cyclic AMP accumulation was inhibited by the addition of cimetidine or famotidine, but not by mepyramine or diphenhydramine. The accumulation of cyclic AMP in the presence of SAM was observed by the addition of impromidine or dimaprit, but not by 2-pyridylethylamine. These results indicate that phospholipid methylation is induced by histamine and may participate in H2-receptor-mediated stimulation of adenylate cyclase in rat brain.  相似文献   

6.
Abstract: In this report, we have examined the radioligand binding and second messenger signalling characteristics of β-adrenoceptors in the guinea-pig brain. [125I]lodocyanopindolol ([125I]ICYP)-labelled sites in the cerebellum and cerebral cortex were of similar densities ( B max 34 and 24 fmol·mg−1) and affinities ( K D 20 and 55 p M ), respectively. Analysis of competition for [125I]ICYP binding in the cerebellum was compatible with the presence of a β2-adrenoceptor. In this tissue, isoprenaline evoked a cyclic AMP stimulation, and also potentiated cyclic GMP accumulations evoked in the presence of a nitric oxide donor, consistent with mediation via a β2-adrenoceptor. The [125I]ICYP binding profile in the cerebral cortex did not comply with those previously described for β-adrenoceptor subtypes, and isoprenaline failed to alter significantly cyclic AMP accumulation in the cerebral cortex, hippocampus, or neostriatum, even in the presence of forskolin or a phosphodiesterase inhibitor. Isoprenaline was also without effect on cyclic GMP accumulation or phosphoinositide turnover in the cerebral cortex. These results suggest that the guinea-pig cerebellum expresses a functional β2-adrenoceptor coupled to cyclic AMP generation, and potentiation of cyclic GMP accumulation. However, the guinea-pig cerebral cortex displays binding sites that exhibit β-adrenoceptor-like pharmacology but fail to show functional coupling to cyclic AMP, cyclic GMP, or phosphoinositide signalling systems.  相似文献   

7.
Adenosine 3′, 5′-monophosphate (cyclic AMP) and guanosine 3′,5- monophosphate (cyclic GMP) levels were measured in seven brain areas of spontaneously hypertensive rats (SHR) and two groups of control rats. In cerebral cortex, hypothalamus, pons-medulla oblongata and cerebellum cyclic AMP levels were higher in SHR than in Wistar-Kyoto controls. Cyclic GMP levels were higher in SHR than in Wistar-Kyoto rats in all brain areas except for the striatum and hippocampus where the levels were lower. There were also some differences in cyclic nucleotide levels between Wistar-Kyoto and Wistar-Charles River controls.  相似文献   

8.
The effects of ligation of both common carotid arteries in the gerbil on the levels of PGF2 alpha, TXB2, HETE and of energy metabolites in brain cortex, have been investigated. Also, in the same experimental conditions the changes of cyclic AMP in brain cortex, cerebellum, striatum and hippocampus have been monitored. ATP, glycogen, glucose and phosphocreatine decrease whereas, lactate and cyclic AMP are enhanced in the ischemic brain, as previously reported. In contrast, levels of arachidonic acid metabolites are not modified. During ischemia following decapitation, instead, PGF2 alpha, and TXB2, show considerable increase.  相似文献   

9.
–Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels increase about 5-fold in the cerebral cortex and 2-fold in the cerebellum following electroconvulsive shock (ECS). The peak levels of cyclic AMP occur at 45 s after ECS in the cerebral cortex, and at 15 s in the cerebellum. In the cerebral cortex, ECS produces twice the cyclic AMP accumulation as does decapitation in a comparable time period; however, the relative effect of a number of neurotropic agents on the cyclic AMP accumulation is essentially the same, whether stimulated by decapitation or by ECS. In the cerebellum, the levels of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) also increase following ECS. The cyclic GMP levels are greatest at 60 s after ECS during the postictal depression. An association between elevated cerebellar cyclic GMP and depression seems unlikely, since CNS depressants either lowered or had no effect on cyclic GMP levels. From these results, cyclic nucleotide profiles following treatments such as ECS or decapitation may be useful in elucidating the molecular events involved in seizures, brain injury and ischemia.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号