首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
2.
3.
4.
5.
Sucrose transporters (SUTs) play a critical role on the phloem plasma membrane in loading sucrose into the phloem of source leaves for long-distance transport to sink organs. Rice has a small gene family of five SUTs, Oryza sativa SUT1 (OsSUT1) to OsSUT5. To identify rice SUTs that function as phloem loaders, we adopted a growth restoration assay of the severe growth retardation phenotype of atsuc2, a mutant of the best-characterized Arabidopsis phloem loader AtSUC2, by introducing OsSUTs. The rice SUT genes were expressed by two different promoters, the native phloem-specific promoter of AtSUC2 (pAtSUC2) and the constitutive Cauliflower Mosaic Virus 35S (pCaMV35S) promoter. Of all the transgenic atsuc2 plants, only pAtSUC2: OsSUT1 complemented the atsuc2 mutant phenotype in a comparable manner to wild type (WT), and consistent levels of soluble sugars and starch were recovered compared to those of WT. This suggests that OsSUT1 is a functional ortholog of the Arabidopsis AtSUC2 and functions as an apoplastic phloem loader. In addition, ossut1 mutants were produced via anther culture and their primary carbohydrate levels and growth phenotypes were indistinguishable from those of WT. This suggests that the rice phloem loader OsSUT1 function may not be essential for rice vegetative growth under normal conditions.  相似文献   

6.
A plastidic ATP/ADP transporter (AATP) is responsible for importing ATP from the cytosol into plastids. Increasing the ATP supply is a potential way to facilitate anabolic synthesis in heterotrophic plastids of plants. In this work, a gene encoding the AATP protein, named SlAATP, was successfully isolated from tomato. Expression of SlAATP was induced by exogenous sucrose treatment in tomato. The coding region of SlAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of SlAATP significantly increased the starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of StAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AtAGPase), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild-type (WT). These findings suggest that SlAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes invovled in starch biosynthesis. The manipulation of SlAATP expression might be used for increasing starch accumulation of plants in the future.  相似文献   

7.
Christolea crassifolia HARDY: gene (CcHRD) belongs to the AP2/ERF-like tanscritpion factor family, and overexpression of HRD gene has been proved to result in improved water use efficiency and enhanced drought resistance in multiple plant species. In the present study, we cloned the CcHRD gene from Christolea crassifolia, which shares 99.1% sequence similarity with the HRD gene from Arabidopsis thaliana. We generated transgenic tomato plants expressing CcHRD gene by agrobacterium-mediated genetic transformation. Our results revealed that the transgenic tomato plants showed a more developed root system and higher fruit yield than the wild-type plants. Furthermore, the leaf relative water content, chlorophyll content and Fv/Fm value in transgenic plants were significantly higher than the wild type, while the relative conductivity and MDA content of transgenic plant leaves were markedly lower than those of wild type under drought stress. We also observed that the major agronomic traits of transgenic tomato plants were improved under natural drought stress compared with those of the wild type. In summary, results in this transgenic study showed that the CcHRD gene could enhance the drought resistance in tomato, and also provided important information for the application of drought-responsive genes in improving crop plant resistance to abiotic stresses.  相似文献   

8.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

9.

Key message

Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing.

Abstract

Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB.
  相似文献   

10.
Flowering time in members of the Solanaceae plant family, such as pepper (Capsicum spp.) and tomato (Solanum lycopersicum), is an important agronomic trait for controlling shoot architecture and improving yield. To investigate the feasibility of flowering time regulation in tomato, an RNA-binding protein (RBP) encoding gene homologous to human Nucleolar protein interacting with the forkhead-associated (FHA) domain of pKI-67 (NIFK), CaRBP, was isolated from hot pepper. The function of CaRBP was determined in transgenic tomato. The deduced amino acid sequence includes an RNA recognition motif (RRM) and showed most similarity to the RRM present in a putative RBP encoded by human NIFK. CaRBP was highly expressed in the vegetative and reproductive tissues, such as leaves and fruits, respectively. Subcellular localization analysis indicated that CaRBP is a nucleolar protein. Heterologous expression of CaRBP under 35S promoter in tomato plants induced severe alteration of flowering with additional defects of vegetative organs. This floral retardation was associated with the alteration of SFT/SP3D and SlSOC1s as floral integrators. Furthermore, CaRBP reduces the expression levels of SlCOLs/TCOLs via changes in the expression of SlCDF3, SlFBHs, and SlFKF1s. This indicates a repressive effect of CaRBP on the regulation of flowering time in tomato. Overall, these results suggest that alteration in CaRBP expression levels may provide an effective means of controlling flowering time in day-neutral Solanaceae.  相似文献   

11.
Due to the importance of wood in many industrial applications, a tremendous amount of research has focused on the regulation of secondary xylem formation and wood properties. In this study, we performed functional analysis of PtaGLIM1a, a LIM gene that is predominantly expressed in the differentiation of secondary xylem of the hybrid poplar (Populus tremula × P. alba). With no growth retardation, transgenic poplar plants with increased and reduced expression levels of PtaGlim1a exhibited enhanced and diminished secondary growth, respectively, accompanied by a corresponding change in their lignin abundance. This study demonstrates that the wood-associated PtaGlim1a acts as a positive regulator of secondary xylem formation in poplar trees and could potentially be utilized in modifying the synthesis of plant secondary wall lignin.  相似文献   

12.
13.
14.
The construction of expression cassettes harboring tissue-specific promoters is a viable alternative to limit transgene expression to specific organs and cell types. In this study, we have functionally characterized the promoter of a Eucalyptus grandis gene encoding a putative high-affinity HAK5-like potassium (K+) transporter (designated EgHAK5) showing root-specific expression. The ability of the EgHAK 5′-flanking region (~1.3 kb) to drive root-specific expression of a reporter gene (β-glucuronidase; GUS) was examined using transgenic tobacco plants. Histochemical analysis revealed enhanced GUS staining in the vasculature of leaves, hypocotyls and roots, which was also confirmed in histological cross-sections. Moreover, the relative expression of GUS in the roots of the generated transgenic lines was increased in response to K+ starvation. Overall, our results indicate that, in a heterologous system, the EgHAK5 promoter shows expression in vascular tissues, mainly within the phloem, and is up-regulated upon potassium deprivation.  相似文献   

15.
It is well established that small heat shock proteins (sHSPs) play an important role in thermotolerance in various organisms due to their abundance and diversity. In the present study, a chloroplast small heat shock protein gene (LeHSP21) from tomato (Lycopersicon esculentum cv PKM-1) was constitutively expressed in tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants via Agrobacterium-mediated transformation. When compared to wild-type control plants, transgenic tobacco plants constitutively expressing LeHSP21, driven by the cauliflower mosaic virus 35S promoter, exhibited improved tolerance to both high temperature and oxidative stress. Furthermore, when the seedlings were subjected to high temperature treatment, the activities of anti-oxidative enzymes and the content of proline were significantly higher in transgenic plants than those in the wild-type plants. Our results presented here demonstrate the feasibility of improving high temperature and oxidative stress tolerance in plants through the expression of LeHSP21 gene.  相似文献   

16.
In Arabidopsis, it has been clarified that AGO4 protein is implicated in a phenomenon termed RNA-directed DNA methylation (RdDM). Previously, four orthologs of AtAGO4 were cloned in tomato, designated as SlAGO4ASlAGO4D. Here, we studied the role of the SlAGO4A gene in regulating salt and drought tolerance in tomato. SlAGO4A-down-regulating (AS) transgenic tomato plants showed enhanced tolerance to salt and drought stress compared to wild-type (WT) and SlAGO4A-overexpressing (OE) transgenic plants, as assessed by physiological parameters such as seed germination rate, primary root length, chlorophyll/proline/MDA/soluble sugar/RWC content, and survival rate. Moreover, several genes involved in ROS scavenging and plant defense, including CAT, SOD, GST, POD, APX, LOX, and PR1, were up- or down-regulated consistently under salt and drought stress. Notably, expression levels of some DNA methyltransferase genes and RNAi pathway genes were significantly lower in AS plants than in WT. Taken together, our results suggest that SlAGO4A gene plays a negative role under salt and drought stress in tomato probably through the modulation of DNA methylation as well as the classical RNAi pathway. Hence, it may serve as a useful biotechnological tool for the genetic improvement of stress tolerance in crops.  相似文献   

17.
Plant proteinase inhibitors (PIs) are plant defense proteins and considered as potential candidates for engineering plant resistances against herbivores. Capsicum annuum proteinase inhibitor (CanPI7) is a multi-domain potato type II inhibitor (Pin-II) containing four inhibitory repeat domains (IRD), which target major classes of digestive enzymes in the gut of Helicoverpa armigera larvae. Stable integration and expression of the transgene in T1 transgenic generation, were confirmed by established molecular techniques. Protein extract of transgenic tomato lines showed increased inhibitory activity against H. armigera gut proteinases, supporting those domains of CanPI7 protein to be effective and active. When T1 generation plants were analyzed, they exhibited antibiosis effect against first instar larvae of H. armigera. Further, larvae fed on transgenic tomato leaves showed delayed growth relative to larvae fed on control plants, but did not change mortality rates significantly. Thus, better crop protection can be achieved in transgenic tomato by overexpression of multi-domain proteinase inhibitor CanPI7 gene against H. armigera larvae.  相似文献   

18.
Choline monooxygenase (CMO) is a key enzyme involved in betaine synthesis and our preliminary work has shown that the SlCMO gene promoter (pC5: ??267 to +?128 base pair), cloned from Suaeda liaotungensis, is salt-inducible. In the present study, pC5-SlCMO was transferred into tomato (Solanum lycopersicon L. ‘Micro-Tom’) plants via Agrobacterium mediation. Homozygous transgenic plants were selected using quantitative real-time polymerase chain reaction. The expression of SlCMO in pC5-SlCMO transgenic plants was induced by salinity. Under salt tolerance, betaine content, chlorophyll content, and net photosynthetic rate were higher in transgenic plants than in wild-type (WT) plants. Proline content was lower in transgenic plants than in WT plants. Under normal conditions, seed germination, length of the whole plant, dry weight, and fruit products of transgenic plants were the same as in WT plants. These results demonstrated that the pC5 promoter can drive increased expression of SlCMO in transgenic tomato plants under salt stress and increase salt tolerance without affecting plant growth and yield.  相似文献   

19.
20.
Development of xylem cells is affected by environmental stresses such as drought and oxidative stress, and recent findings suggested that jasmonic acid (JA) mediates this process through interaction with other phytohormones such as cytokinin. In this study, we showed that polar auxin transport regulated by PIN3 and PIN7 is involved in the JA-mediated xylem development in vascular tissues. The mutant plants that lack the activity of PIN3 and PIN7 responsible for the auxin transport developed extra xylems in vascular tissues such as the JA-treated wild-type plants. Visualization of auxin response and xylem development in the roots treated with NPA, an inhibitor of polar auxin transport, suggested that disruption of polar auxin transport is involved in the xylem phenotype of pin3 pin7 double mutants. We also found that cytokinin increases expressions of PIN3 and PIN7 responsible for the auxin transport while JA decreases only PIN7. These suggested that PIN7-mediated polar auxin transport system modulates xylem development in response to JA. The finding that JA affects auxin distribution in root vascular tissues further supported this. Collectively, these suggest that JA promotes xylem development by disrupting auxin transport in vascular tissues, and the auxin efflux genes, more especially PIN7 whose expression is suppressed by JA mediates this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号