首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the rib cage on thoracic spine loading are not well studied, but the rib cage may provide stability or share loads with the spine. Intervertebral disc pressure provides insight into spinal loading, but such measurements are lacking in the thoracic spine. Thus, our objective was to examine thoracic intradiscal pressures under applied pure moments, and to determine the effect of the rib cage on these pressures. Human cadaveric thoracic spine specimens were positioned upright in a testing machine, and Dynamic pure moments (0 to ±5 N·m) with a compressive follower load of 400 N were applied in axial rotation, flexion - extension, and lateral bending. Disc pressures were measured at T4-T5 and T8-T9 using needle-mounted pressure transducers, first with the rib cage intact, and again after the rib cage was removed. Changes in pressure vs. moment slopes with rib cage removal were examined. Pressure generally increased with applied moments, and pressure-moment slope increased with rib cage removal at T4-T5 for axial rotation, extension, and lateral bending, and at T8-T9 for axial rotation. The results suggest the intact rib cage carried about 62% and 56% of axial rotation moments about T4-T5 and T8-T9, respectively, as well as 42% of extension moment and 36–43% of lateral bending moment about T4-T5 only. The rib cage likely plays a larger role in supporting moments than compressive loads, and may also play a larger role in the upper thorax than the lower thorax.  相似文献   

2.
Cervical spine injuries continue to be a costly societal problem. Future advancements in injury prevention depend on improved physical and computational models which, in turn, are predicated on a better understanding of the responses of the neck during dynamic loading. Previous studies have shown that the tolerance of the neck is dependent on its initial position and its buckling behavior. This study uses a computational model to examine the mechanical factors influencing buckling behavior during impact to the neck. It was hypothesized that the inertial properties of the cervical spine influence the dynamics during compressive axial loading. The hypothesis was tested by performing parametric analyses of vertebral mass, mass moments of inertia, motion segment stiffness, and loading rate. Increases in vertebral mass resulted in increasingly complex kinematics and larger peak loads and impulses. Similar results were observed for increases in stiffness. Faster loading rates were associated with higher peak loads and higher-order buckling modes. The results demonstrate that mass has a great deal of influence on the buckling behavior of the neck, particularly with respect to the expression of higher-order modes. Injury types and mechanisms may be substantially altered by loading rate because inertial effects may influence whether the cervical spine fails in a compressive mode, or a bending mode.  相似文献   

3.
A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.  相似文献   

4.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

5.
Moment arms of the human neck muscles in flexion, bending and rotation   总被引:1,自引:0,他引:1  
There is a paucity of data available for the moment arms of the muscles of the human neck. The objective of the present study was to measure the moment arms of the major cervical spine muscles in vitro. Experiments were performed on five fresh-frozen human head-neck specimens using a custom-designed robotic spine testing apparatus. The testing apparatus replicated flexion-extension, lateral bending and axial rotation of each individual intervertebral joint in the cervical spine while all other joints were kept immobile. The tendon excursion method was used to measure the moment arms of 30 muscle sub-regions involving 13 major muscles of the neck about all three axes of rotation of each joint for the neutral position of the cervical spine. Significant differences in the moment arm were observed across sub-regions of individual muscles and across the intervertebral joints spanned by each muscle (p<0.05). Overall, muscle moment arms were larger in flexion-extension and lateral bending than in axial rotation, and most muscles had prominent moment arms in at least 2 out of the 3 joint motions investigated. This study emphasizes the importance of detailed representation of a muscle's architecture in prediction of its torque capacity about the individual joints of the cervical spine. The dataset produced may be useful in developing and validating computational models of the human neck.  相似文献   

6.
Although muscles are assumed to be capable of stabilizing the spinal column in vivo, they have only rarely been simulated in vitro. Their effect might be of particular importance in unstable segments. The present study therefore tests the hypothesis that mechanically simulated muscle forces stabilize intact and injured cervical spine specimens. In the first step, six human occipito-cervical spine specimens were loaded intact in a spine tester with pure moments in lateral bending (+/- 1.5 N m), flexion-extension (+/- 1.5 N m) and axial rotation (+/- 0.5 N m). In the second step, identical flexibility tests were carried out during constant traction of three mechanically simulated muscle pairs: splenius capitits (5 N), semispinalis capitis (5 N) and longus colli (15 N). Both steps were repeated after unilateral and bilateral transection of the alar ligaments. The muscle forces strongly stabilized C0-C2 in all loading and injury states. This was most obvious in axial rotation, where a reduction of range of motion (ROM) and neutral zone to <50% (without muscles=100%) was observed. With increasing injury the normalized ROM (intact condition=100%) increased with and without muscles approximately to the same extend. With bilateral injury this increase was 125-132% in lateral bending, 112%-119% in flexion-extension and 103-116% in axial rotation. Mechanically simulated cervical spine muscles strongly stabilized intact and injured cervical spine specimens. Nevertheless, it could be shown that in vitro flexibility tests without muscle force simulation do not necessarily lead to an overestimation of spinal instability if the results are normalized to the intact state.  相似文献   

7.
Previous research has quantified differences in head and spinal kinematics between children and adults restrained in an automotive-like configuration subjected to low speed dynamic loading. The forces and moments that the cervical spine imposes on the head contribute directly to these age-based kinematic variations. To provide further explanation of the kinematic results, this study compared the upper neck kinetics - including the relative contribution of shear and tension as well as flexion moment - between children (n=20, 6-14 yr) and adults (n=10, 18-30 yr) during low-speed (<4 g, 2.5 m/s) frontal sled tests. The subjects were restrained by a lap and shoulder belt and photo-reflective targets were attached to skeletal landmarks on the head, spine, shoulders, sternum, and legs. A 3D infrared tracking system quantified the position of the targets. Shear force (F(x)), axial force (F(z)), bending moment (M(y)), and head angular acceleration (θ(head)) were computed using inverse dynamics. The method was validated against ATD measured loads. Peak F(z) and θ(head) significantly decreased with increasing age while M(y) significantly increased with increasing age. F(x) significantly increased with age when age was considered as a univariate variable; however when variations in head-to-neck girth ratio and change in velocity were accounted for, this difference as a function of age was not significant. These results provide insight into the relationship between age-based differences in head kinematics and the kinetics of the cervical spine. Such information is valuable for pediatric cervical spine models and when scaling adult-based upper cervical spine tolerance and injury metrics to children.  相似文献   

8.
The biomechanical properties of the ligamentous cadaver spine have been previously examined using a variety of experimental testing protocols. Ongoing technical challenges in the biomechanical testing of the spine include the application of physiologic compressive loads and the application of dynamic bending moments while allowing unconstrained three-dimensional motion. The purpose of this study was to report the development of a novel pendulum apparatus that addressed these challenges and to determine the effects of various axial compressive loads on the dynamic biomechanical properties of the lumbar functional spinal unit (FSU). Lumbar FSUs were tested in flexion and extension under five axial compressive loads chosen to represent physiologic loading conditions. After an initial rotation, the FSUs behaved as a dynamic, underdamped vibrating elastic system. Bending stiffness and coefficient of damping increased significantly as the compressive pendulum load increased. The apparatus described herein is a relatively simple approach to determining the dynamic bending properties of the FSU, and potentially disc arthroplasty devices. It is capable of applying physiologic compressive loads at dynamic rates without constraining the kinematics of the joints, crucial requirements for testing FSUs in vitro.  相似文献   

9.
Microtubules play a number of important mechanical roles in almost all cell types in nearly all major phylogenetic trees. We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for the axial and circumferential moduli for all currently known complete sequences. The axial elastic moduli, in vacuo, were found to be 1.25 GPa and 1.34 GPa for α- and β-bovine tubulin monomers. In the circumferential direction, these moduli were 378 MPa for α- and 460 MPa for β-structures. Using bovine tubulin as a template, 269 homologous tubulin structures were also subjected to simulated tensile loads yielding an average axial elastic modulus of 1.10 ± 0.14 GPa for α-tubulin structures and 1.39 ± 0.68 GPa for β-tubulin. Circumferentially the α- and β-moduli were 936 ± 216 MPa and 658 ± 134 MPa, respectively. Our primary finding is that that the axial elastic modulus of tubulin diminishes as the length of the monomer increases. However, in the circumferential direction, no correlation exists. These predicted anisotropies and scale dependencies may assist in interpreting the macroscale behavior of microtubules during mitosis or cell growth. Additionally, an intergenomic approach to investigating the mechanical properties of proteins may provide a way to elucidate the evolutionary mechanical constraints imposed by nature upon individual subcellular components.  相似文献   

10.
The relationships between applied pure moments at the occiput (C0) and the resulting rotations at the atlanto-occipital (C0-C1) and atlanto-axial (C1-C2) joints are quantified. In axial twist, with a moment of 0.3 Nm, a mean rotation of about 2.5 degrees and 23.3 degrees was observed at C0-C1 and C1-C2 units respectively. Both the atlas and axis contributed to produce lateral bending motion. The ratio between extension and flexion rotations at C0-C1 was 2.5:1. Lateral bending and axial rotations were strongly coupled to each other. The occipito-atlanto-axial complex exhibited a large 'neutral zone' compared to lower cervical spine segments. The likely clinical significance of these findings are discussed.  相似文献   

11.
The exposure to acute or chronic endoplasmic reticulum (ER) stress has been known to induce dysfunction of islets, leading to apoptosis. The reduction of ER stress in islet isolation for transplantation is critical for islet protection. In this study, we investigated whether tauroursodeoxycholate (TUDCA) could inhibit ER stress induced by thapsigargin, and restore the decreased glucose stimulation index of islets. In pig islets, thapsigargin decreased the insulin secretion by high glucose stimulation in a time-dependent manner (1 h, 1.35 ± 0.16; 2 h, 1.21 ± 0.13; 4 h, 1.17 ± 0.16 vs. 0 h, 1.81 ± 0.15, n = 4, < 0.05, respectively). However, the treatment of TUDCA restored the decreased insulin secretion index induced by thapsigargin (thapsigargin, 1.25 ± 0.12 vs. thapsigargin + TUDCA, 2.13 ± 0.19, n = 5, < 0.05). Furthermore, the culture of isolated islets for 24 h with TUDCA significantly reduced the rate of islet regression (37.4 ± 5.8% vs. 14.5 ± 6.4%, n = 12, < 0.05). The treatment of TUDCA enhanced ATP contents in islets (27.2 ± 3.2 pmol/20IEQs vs. 21.7 ± 2.8 pmol/20IEQs, n = 9, < 0.05). The insulin secretion index by high glucose stimulation is also increased by treatment of TUDCA (2.42 ± 0.15 vs. 1.92 ± 0.12, n = 12, < 0.05). Taken together, we suggest that TUDCA could be a useful agent for islet protection in islet isolation for transplantation.  相似文献   

12.
The effects of aluminium (Al) on thyroid function were evaluated in adult Wistar rats intraperitoneally (i.p) injected with 7 mg Al (as lactate)/kg body weight (b.w) per day during a six week period. The time-course kinetics of Na125I (3 μCi per 100 g b.w, i.p) was analysed by measuring gamma-radioactivity of thyroid, serum, serum protein precipitate and bile, at times ranging from 2 to 96 h post-dosing. In Al-treated group the 125I thyroid uptake at 24 h (15,840 ± 570 vs. 18,030 ± 630 dpm/mg, P < 0.05) as well as the rate of 125I release from the gland, calculated as the slope of the plot between 24 and 96 h (84 ± 8 vs. 129 ± 11 dpm/mg/h, P < 0.05) were significantly reduced as compared to control. The biliary 125I excretion was not modified at all studied times. The Al content and lipid peroxidation (69.1 ± 8.5 vs. 53.2 ± 7.0 nmol MDA/g wet weight, P < 0.05) of thyroid tissue were increased in Al-treated rats. The serum concentrations of total thyroxine (T4, 3.78 ± 0.14 vs. 4.68 ± 0.12 μg/dL, P < 0.05) and total triiodothyronine (T3, 47 ± 4 vs. 66 ± 5 ng/dL, P < 0.05) were decreased by effect of Al, but free-T4 (1.05 ± 0.05 vs. 1.04 ± 0.04 ng/dL, NS) and thyrotropin (TSH, 2.7 ± 0.4 vs. 2.6 ± 0.5 ng/ml, NS) remain unchanged. In spite of the Al could indirectly affect thyroid iodide uptake and hormones secretion by a mechanism involving the induction of an oxidative stress state, however, these changes could be managed by the hypothalamus-pituitary-thyroid endocrine axis. We can conclude that in adult rats the Al would not act as a thyroid disruptor.  相似文献   

13.
Accurate measurement of the coupled intervertebral motions is helpful for understanding the etiology and diagnosis of relevant diseases, and for assessing the subsequent treatment. No study has reported the in vivo, dynamic and three-dimensional (3D) intervertebral motion of the cervical spine during active axial rotation (AR) and lateral bending (LB) in the sitting position. The current study fills the gap by measuring the coupled intervertebral motions of the subaxial cervical spine in ten asymptomatic young adults in an upright sitting position during active head LB and AR using a volumetric model-based 2D-to-3D registration method via biplane fluoroscopy. Subject-specific models of the individual vertebrae were derived from each subject’s CT data and were registered to the fluoroscopic images for determining the 3D poses of the subaxial vertebrae that were used to obtain the intervertebral kinematics. The averaged ranges of motion to one side (ROM) during AR at C3/C4, C4/C5, C5/C6, and C6/C7 were 4.2°, 4.6°, 3.0° and 1.3°, respectively. The corresponding values were 6.4°, 5.2°, 6.1° and 6.1° during LB. Intervertebral LB (ILB) played an important role in both AR and LB tasks of the cervical spine, experiencing greater ROM than intervertebral AR (IAR) (ratio of coupled motion (IAR/ILB): 0.23–0.75 in LB, 0.34–0.95 in AR). Compared to the AR task, the ranges of ILB during the LB task were significantly greater at C5/6 (p=0.008) and C6/7 (p=0.001) but the range of IAR was significantly smaller at C4/5 (p=0.02), leading to significantly smaller ratios of coupled motions at C4/5 (p=0.0013), C5/6 (p<0.001) and C6/7 (p=0.0037). The observed coupling characteristics of the intervertebral kinematics were different from those in previous studies under discrete static conditions in a supine position without weight-bearing, suggesting that the testing conditions likely affect the kinematics of the subaxial cervical spine. While C1 and C2 were not included owing to technical limitations, the current results nonetheless provide baseline data of the intervertebral motion of the subaxial cervical spine in asymptomatic young subjects under physiological conditions, which may be helpful for further investigations into spine biomechanics.  相似文献   

14.
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.  相似文献   

15.
High failure rates of femoropopliteal artery reconstruction are commonly attributed to complex 3D arterial deformations that occur with limb movement. The purpose of this study was to develop a method for accurate assessment of these deformations. Custom-made stainless-steel markers were deployed into 5 in situ cadaveric femoropopliteal arteries using fluoroscopy. Thin-section CT images were acquired with each limb in the straight and acutely bent states. Image segmentation and 3D reconstruction allowed comparison of the relative locations of each intra-arterial marker position for determination of the artery’s bending, torsion and axial compression. After imaging, each artery was excised for histological analysis using Verhoeff–Van Gieson staining. Femoropopliteal arteries deformed non-uniformly with highly localized deformations in the proximal superficial femoral artery, and between the adductor hiatus and distal popliteal artery. The largest bending (11±3–6±1 mm radius of curvature), twisting (28±9–77±27°/cm) and axial compression (19±10–30±8%) were registered at the adductor hiatus and the below knee popliteal artery. These deformations were 3.7, 19 and 2.5 fold more severe than values currently reported in the literature. Histology demonstrated a distinct sub-adventitial layer of longitudinally oriented elastin fibers with intimal thickening in the segments with the largest deformations. This endovascular intra-arterial marker technique can quantify the non-uniform 3D deformations of the femoropopliteal artery during knee flexion without disturbing surrounding structures. We demonstrate that 3D arterial bending, torsion and compression in the flexed lower limb are highly localized and are substantially more severe than previously reported.  相似文献   

16.
To date, kinematics data analyzing continuous 3D motion of upper cervical spine (UCS) manipulation is lacking. This in vitro study aims at investigating inter- and intra-operator reliability of kinematics during high velocity low amplitude manipulation of the UCS.Three fresh specimens were used. Restricted dissection was realized to attach technical clusters to each bone (skull to C2). Motion data was obtained using an optoelectronic system during manipulation. Kinematics data were integrated into specific-subject 3D models to provide anatomical motion representation during thrust manipulation. The reliability of manipulation kinematics was assessed for three practitioners performing two sessions of three repetitions on two separate days.For pre-manipulation positioning, average UCS ROM (SD) were 10° (5°), 22° (5°) and 14° (4°) for lateral bending, axial rotation and flexion–extension, respectively. For the impulse phase, average axial rotation magnitude ranged from 7° to 12°. Reliability analysis showed average RMS up to 8° for pre-manipulation positioning and up to 5° for the impulse phase.As compared to physiological ROM, this study supports the limited angular displacement during manipulation for UCS motion components, especially for axial rotation. Kinematics reliability confirms intra- and inter-operator consistency although pre-manipulation positioning reliability is slightly lower between practitioners and sessions.  相似文献   

17.
In this study, the characteristics of ovarian follicular waves and patterns of serum concentrations of follicle-stimulating hormone (FSH), estradiol, and progesterone were compared between cycles with three (n = 9) or four (n = 10) follicular waves in Western White Face (WWF) ewes (Ovis aries). Transrectal ultrasonography and blood sampling were performed daily during one cycle. Estrous cycles were 17.11 ± 0.3 and 17.20 ± 0.2 d long in cycles with three and four waves, respectively (P > 0.05). The first interwave interval and the interval from the emergence of the final wave to the day of ovulation were longer in cycles with three waves compared with those in cycles with four waves (P < 0.05). The growth phase (5.1 ± 0.5 vs. 3.1 ± 0.4 d) and life span (5.67 ± 0.3 vs. 4.3 ± 0.3 d) of the largest follicle growing in the last or ovulatory wave was longer in cycles with three waves compared with that in cycles with four waves (P < 0.05). The maximum diameter of the largest follicle was greater in the first wave and the ovulatory wave compared with that in other waves of the cycle (P < 0.05). The regression phase of the largest follicle growing in the first wave was longer in cycles with three waves compared with that in cycles with four waves (4.44 ± 0.4 vs. 3.4 ± 0.4 d; P < 0.05). The length of the life span, regression phase, and, although not significant in every case, FSH peak concentration and amplitude decreased across the cycle (P < 0.05). We concluded that estrous cycles with three or four follicular waves were confined within the same length of cycle in WWF ewes. In this study, there were no apparent endocrine or follicular characteristics that could explain the regulation of the different number of follicular waves (three vs. four) during cycles of similar length.  相似文献   

18.
Two experiments were conducted to investigate the effects of equine chorionic gonadotropin (eCG) at progestin removal and gonadotropin-releasing hormone (GnRH) at timed artificial insemination (TAI) on ovarian follicular dynamics (Experiment 1) and pregnancy rates (Experiment 2) in suckled Nelore (Bos indicus) cows. Both experiments were 2 × 2 factorials (eCG or No eCG, and GnRH or No GnRH), with identical treatments. In Experiment 1, 50 anestrous cows, 134.5 ± 2.3 d postpartum, received a 3 mg norgestomet ear implant sc, plus 3 mg norgestomet and 5 mg estradiol valerate im on Day 0. The implant was removed on Day 9, with TAI 54 h later. Cows received 400 IU eCG or no further treatment on Day 9 and GnRH (100 μg gonadorelin) or no further treatment at TAI. Treatment with eCG increased the growth rate of the largest follicle from Days 9 to 11 (means ± SEM, 1.53 ± 0.1 vs. 0.48 ± 0.1 mm/d; P < 0.0001), its diameter on Day 11 (11.4 ± 0.6 vs. 9.3 ± 0.7 mm; P = 0.03), as well as ovulation rate (80.8% vs. 50.0%, P = 0.02), whereas GnRH improved the synchrony of ovulation (72.0 ± 1.1 vs. 71.1 ± 2.0 h). In Experiment 2 (n = 599 cows, 40 to 120 d postpartum), pregnancy rates differed (P = 0.004) among groups (27.6%, 40.1%, 47.7%, and 55.7% for Control, GnRH, eCG, and eCG + GnRH groups). Both eCG and GnRH improved pregnancy rates (51.7% vs. 33.8%, P = 0.002; and 48.0% vs 37.6%, P = 0.02, respectively), although their effects were not additive (no significant interaction). In conclusion, eCG at norgestomet implant removal increased the growth rate of the largest follicle (LF) from implant removal to TAI, the diameter of the LF at TAI, and rates of ovulation and pregnancy rates. Furthermore, GnRH at TAI improved the synchrony of ovulations and pregnancy rates in postpartum Nelore cows treated with a norgestomet-based TAI protocol.  相似文献   

19.
Bovine (Bos indicus) herpesviruses have been associated with reproductive disease. Type 1, the most studied species, is best known for its reproductive and respiratory effects. Type 5 (BoHV-5) has been detected in bull semen and aborted fetuses but not in oocytes and embryos. This study consisted of three experiments that evaluated (1) BoHV-5-infected oocytes matured in medium with fetal bovine serum (BoHV-FBS) or polyvinyl alcohol (BoHV-PVA) and fertilized by noninfected sperm; (2) noninfected oocytes fertilized by BoHV-5-infected sperm; and (3) infection of presumptive zygotes by BoHV-5. Each treatment involved nine drops of 15 to 20 oocytes. Infection with BoHV-5 was detected by polymerase chain reaction and in situ hybridization assay, and fertilization capacity and embryonic development were assessed using in vitro culture. Experimentally induced infection was obtained in all experiments, and vertical transmission of BoHV-5 by gametes was confirmed. The cleavage rate was reduced (P = 0.0201) in BoHV-FBS (80.4 ± 8.9%; mean ± SD) compared with that of noninfected oocytes (89.9 ± 6.5%); neither differed from BoHV-PVA (87.3 ± 7.1%), and the resulting embryo production rate was not significantly different among groups. Rates of cleavage (87.5 ± 7.5% vs. 92.2 ± 5.5%, control vs. infected) and development of embryos (41.7 ± 9.9% vs. 44.3 ± 7.7% to morula/blastocyst/expanded blastocyst [M/B/EB] and 39.6 ± 10.3% vs. 40.8 ± 9.2% to blastocyst/expanded blastocyst/hatching blastocyst [B/EB/HB] stages) were not compromised by infected sperm (P = 0.1462, P = 0.5402, and P = 0.8074, respectively). However, presumptive zygotes directly infected 1 d after fertilization produced a lower number (P = 0.0140 to M/B/EB and P = 0.002 to B/EB/HB stages) of in vitro-produced embryos (31.6 ± 4.6 vs. 25.0 ± 5.5 and 31.6 ± 4.6 vs. 20.2 ± 5.4; control vs. infected). In conclusion, BoHV-5 infected gametes and was transmissible to the embryo during in vitro development. As zygotes infected 1 d after fertilization had compromised development, BoHV-5 has the potential to be a pathogen with economic consequences.  相似文献   

20.
Inhibition of Rho-associated coiled-coil kinase (ROCK) activity promoted recovery and growth of frozen-thawed human embryonic stem cells. The primary objective was to determine if a ROCK inhibitor (Y-27632) in post-thaw culture medium improved revivability of vitrified IVP bovine blastocysts. Expanding or expanded blastocysts (7 d after IVF) were vitrified (minimum volume cooling procedure, using a Cryotop) in 15% ethylene glycol, 15% DMSO and 0.5 M sucrose. When post-warm blastocysts were cultured in mSOF medium, survival rate (re-expansion of blastocoel at 24 h of culture) was improved (P < 0.05) by the addition of 10 μM Y-27632 (94.9 ± 2.4%, mean ± SEM) compared to a control (78.0 ± 6.0%). Conversely, after 48 h of culture, there were no significant differences in hatching rate (62.8 ± 11.1 vs. 59.6 ± 9.4%) and mean total cell number (135.2 ± 13.1 vs. 146.7 ± 13.3). In non-vitrified IVP bovine blastocysts, the hatching rate on Day 9 was improved by Y-27632 (91.7 ± 3.8 vs. 54.7 ± 8.9%, P < 0.05), with no difference in mean total cell number of blastocysts (230.0 ± 23.0 vs. 191.2 ± 22.2, P = 0.23). In an additional experiment, Y-27632 was added to culture medium on either Day 0, Day 2, or Day 4 (and remained present until Day 8), resulting in no improvement in blastocyst yield compared to a control group (7.5 ± 2.1, 31.4 ± 2.3, 36.2 ± 3.2, and 28.6 ± 6.9%, respectively). In conclusion, adding a ROCK inhibitor to post-thaw culture medium improved revivability of IVP bovine blastocysts after vitrification and warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号