首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liver has the unique ability to regenerate after loss of mass and function such as following surgical resection or toxic liver injury. Gene targeting has identified factors crucial to liver development and regeneration. Regeneration occurs through growth-factor- and cytokine-mediated proliferation of differentiated hepatocytes, and extracellular proteases are now recognized to process these molecules. Proteases release cytokines and growth factors that are anchored to the hepatic extracellular matrix or require processing for their bioactivity. Crucial 'start and stop' signals for liver regeneration are regulated by serine proteases and metalloproteases that provide an interface between proteolytic cascades and intracellular signaling during hepatocyte division.  相似文献   

2.
The activin axis in liver biology and disease   总被引:4,自引:0,他引:4  
Activins are a closely related subgroup within the TGFbeta superfamily of growth and differentiation factors. They consist of two disulfide-linked beta subunits. Four mammalian activin beta subunits termed beta(A), beta(B), beta(C), and beta(E), respectively, have been identified. Activin A, the homodimer of two beta(A) subunits, has important regulatory functions in reproductive biology, embryonic development, inflammation, and tissue repair. Several intra- and extracellular antagonists, including the activin-binding proteins follistatin and follistatin-related protein, serve to fine-tune activin A activity. In the liver there is compelling evidence that activin A is involved in the regulation of cell number by inhibition of hepatocyte replication and induction of apoptosis. In addition, activin A stimulates extracellular matrix production in hepatic stellate cells and tubulogenesis of sinusoidal endothelial cells, and thus contributes to restoration of tissue architecture during liver regeneration. Accumulating evidence from animal models and from patient data suggests that deregulation of activin A signaling contributes to pathologic conditions such as hepatic inflammation and fibrosis, acute liver failure, and development of liver cancer. Increased production of activin A was suggested to be a contributing factor to impaired hepatocyte regeneration in acute liver failure and to overproduction of extracellular matrix in liver fibrosis. Recent evidence suggests that escape of (pre)neoplastic hepatocytes from growth control by activin A through overexpression of follistatin and reduced activin production contributes to hepatocarcinogenesis. The role of the activin subunits beta(C) and beta(E), which are both highly expressed in hepatocytes, is still quite incompletely understood. Down-regulation in liver tumors and a growth inhibitory function similar to that of beta(A) has been shown for beta(E). Contradictory results with regard to cell proliferation have been reported for beta(C). The profound involvement of the activin axis in liver biology and in the pathogenesis of severe hepatic diseases suggests activin as potential target for therapeutic interventions.  相似文献   

3.
Lack of Fas antagonism by Met in human fatty liver disease   总被引:11,自引:0,他引:11  
Hepatocytes in fatty livers are hypersensitive to apoptosis and undergo escalated apoptotic activity via death receptor-mediated pathways, particularly that of Fas-FasL, causing hepatic injury that can eventually proceed to cirrhosis and end-stage liver disease. Here we report that the hepatocyte growth factor receptor, Met, plays an important part in preventing Fas-mediated apoptosis of hepatocytes by sequestering Fas. We also show that Fas antagonism by Met is abrogated in human fatty liver disease (FLD). Through structure-function studies, we found that a YLGA amino-acid motif located near the extracellular N terminus of the Met alpha-subunit is necessary and sufficient to specifically bind the extracellular portion of Fas and to act as a potent FasL antagonist and inhibitor of Fas trimerization. Using mouse models of FLD, we show that synthetic YLGA peptide tempers hepatocyte apoptosis and liver damage and therefore has therapeutic potential.  相似文献   

4.
The human adult liver has a multi‐cellular structure consisting of large lobes subdivided into lobules containing portal triads and hepatic cords lined by specialized blood vessels. Vital hepatic functions include filtering blood, metabolizing drugs, and production of bile and blood plasma proteins like albumin, among many other functions, which are generally dependent on the location or zone in which the hepatocyte resides in the liver. Due to the liver's intricate structure, there are many challenges to design differentiation protocols to generate more mature functional hepatocytes from human stem cells and maintain the long‐term viability and functionality of primary hepatocytes. To this end, recent advancements in three‐dimensional (3D) stem cell culture have accelerated the generation of a human miniature liver system, also known as liver organoids, with polarized epithelial cells, supportive cell types and extra‐cellular matrix deposition by translating knowledge gained in studies of animal organogenesis and regeneration. To facilitate the efforts to study human development and disease using in vitro hepatic models, a thorough understanding of state‐of‐art protocols and underlying rationales is essential. Here, we review rapidly evolving 3D liver models, mainly focusing on organoid models differentiated from human cells.  相似文献   

5.
Temporary replacement of specific liver functions with extracorporeal bioartificial liver has been hampered by rapid de‐differentiation of porcine hepatocytes in vitro. Co‐cultivation of hepatocytes with non‐parenchymal cells may be beneficial for optimizing cell functions via mimicry of physiological microenvironment consisting of endogenous matrix proteins. However, the underlying mechanisms remain to be elucidated. A randomly distributed co‐culture system composed of porcine hepatocytes and bone marrow mesenchymal stem cells was generated, and the morphological and functional changes of varying degrees of heterotypic interactions were characterized. Furthermore, contributions of extracellular matrix within this co‐culture were evaluated. A rapid attachment and self‐organization of three‐dimensional hepatocyte spheroids were encouraged. Studies on hepatocyte viability showed a metabolically active, viable cell population in all co‐culture configurations with occurrence of few dead cells. The maximal induction of albumin production, urea synthesis, and cytochrome P4503A1 activities was achieved at seeding ratio of 2:1. Immunocytochemical detection of various extracellular matrix confirmed that a high level of matrix proteins synthesis within distinct cells was involved in hepatocyte homeostasis. These results demonstrate for the first time that cell–matrix has synergic effects on the preservation of hepatic morphology and functionality in the co‐culture of porcine hepatocytes with mesenchymal stem cells in vitro, which could represent a promising tool for tissue engineering, cell biology, and bioartificial liver devices. J. Cell. Physiol. 219: 100–108, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Treatment of liver fibrosis and cirrhosis remains a challenging field. Hepatocyte injury and the activation of hepatic stellate cells are the 2 major events in the development of liver fibrosis and cirrhosis. It is known that several Chinese herbs have significant beneficial effects on the liver; therefore, the purpose of the present study was to investigate the therapeutic effect of saikosaponin-d (SSd) on liver fibrosis and cirrhosis. A rat model of liver fibrosis was established using the dimethylnitrosamine method. Liver tissue and serum were used to examine the effect of SSd on liver fibrosis. A hepatocyte culture was also used to investigate how SSd can protect hepatocytes from oxidative injury induced by carbon tetrachloride. The results showed that SSd significantly reduced collagen I deposition in the liver and alanine aminotransferase level in the serum. Moreover, SSd decreased the content of TGF-beta1 in the liver, which was significantly elevated after dimethylnitrosamine induced liver fibrosis. Furthermore, SSd was able to alleviate hepatocyte injury from oxidative stress. In conclusion, SSd could postpone the development of liver fibrosis by attenuating hepatocyte injury.  相似文献   

7.
The liver is composed of hepatocytes, cholangiocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells (HSCs) and dendritic cells; all these functional and interstitial cells contribute to the synthesis and secretion functions of liver tissue. However, various hepatotoxic factors including infection, chemicals, high‐fat diet consumption, surgical procedures and genetic mutations, as well as biliary tract diseases such as sclerosing cholangitis and bile duct ligation, ultimately progress into liver cirrhosis after activation of fibrogenesis. Melatonin (MT), a special hormone isolated from the pineal gland, participates in regulating multiple physiological functions including sleep promotion, circadian rhythms and neuroendocrine processes. Current evidence shows that MT protects against liver injury by inhibiting oxidation, inflammation, HSC proliferation and hepatocyte apoptosis, thereby inhibiting the progression of liver cirrhosis. In this review, we summarize the circadian rhythm of liver cirrhosis and its potential mechanisms as well as the therapeutic effects of MT on liver cirrhosis and earlier‐stage liver diseases including liver steatosis, nonalcoholic fatty liver disease and liver fibrosis. Given that MT is an antioxidative and anti‐inflammatory agent that is effective in eliminating liver injury, it is a potential agent with which to reverse liver cirrhosis in its early stage.  相似文献   

8.
9.
Fibrosis, defined as the excessive deposition of extracellular matrix in an organ, is the main complication of chronic liver damage. Its endpoint is cirrhosis, which is responsible for significant morbidity and mortality. The accumulation of extracellular matrix observed in fibrosis and cirrhosis is due to the activation of fibroblasts, which acquire a myofibroblastic phenotype. Myofibroblasts are absent from normal liver. They are produced by the activation of precursor cells, such as hepatic stellate cells and portal fibroblasts. These fibrogenic cells are distributed differently in the hepatic lobule: the hepatic stellate cells resemble pericytes and are located along the sinusoids, in the Disse space between the endothelium and the hepatocytes, whereas the portal fibroblasts are embedded in the portal tract connective tissue around portal structures (vessels and biliary structures). Differences have been reported between these two fibrogenic cell populations, in the mechanisms leading to myofibroblastic differentiation, activation and "deactivation", but confirmation is required. Second-layer cells surrounding centrolobular veins, fibroblasts present in the Glisson capsule surrounding the liver, and vascular smooth muscle cells may also express a myofibroblastic phenotype and may be involved in fibrogenesis. It is now widely accepted that the various types of lesion (e.g., lesions caused by alcohol abuse and viral hepatitis) leading to liver fibrosis involve specific fibrogenic cell subpopulations. The biological and biochemical characterisation of these cells is thus essential if we are to understand the mechanisms underlying the progressive development of excessive scarring in the liver. These cells also differ in proliferative and apoptotic capacity, at least in vitro. All this information is required for the development of treatments specifically and efficiently targeting the cells responsible for the development of fibrosis/cirrhosis.  相似文献   

10.
Hepatocellular carcinoma (HCC), the third leading cause of cancer-associated mortality worldwide, is a major public health problem. Zinc finger protein A20 (A20), an acute phase response gene, is a potent inhibitor of NF-κB signaling. A20 serves a critical role in liver protection, including limiting inflammation following hepatic injury, stimulating hepatocyte growth, and preventing hepatic ischemia-reperfusion injury. A20 is also involved in different processes, including tumorigenesis, progression, and metastasis through multiple mechanisms. Accumulated studies have reported the clinical implications and biological relevance of A20 in the development and progression of HCC. The underlying mechanisms of A20 in HCC include inhibition of epithelial–mesenchymal transition, protein tyrosine kinase 2 activation and Rac family GTPase 1 activity. Combining liver protection with tumor inhibition is a unique advantage of A20, which has the potential to be a novel treatment for promoting liver regeneration following liver resection in patients with HCC with liver cirrhosis. This review discusses the hepato-protective effect of A20 on hepatocytes and its potential role in cancer development, particularly its suppressor effect on HCC.  相似文献   

11.
12.
The mammalian small GTPase ADP-ribosylation factor 6 (ARF6) plays important roles in a wide variety of cellular events, including endocytosis, actin cytoskeletal reorganization, and phosphoinositide metabolism. However, physiological functions for ARF6 have not previously been examined. Here, we described the consequence of ARF6 ablation in mice, which manifests most obviously in the context of liver development. Livers from ARF6-/- embryos are smaller and exhibit hypocellularity, due to the onset of midgestational liver cell apoptosis. Preceding the apoptosis, however, defective hepatic cord formation is observed; the liver cells migrate abnormally upon exiting the primordial hepatic epithelial sheet and clump rather than becoming dispersed. Consistent with this observation, the ability of hepatocyte growth factor/scatter factor (HGF) to induce hepatic cord-like structures from ARF6-/- fetal hepatocytes cultured in vitro in collagen gel matrix is impaired. Finally, we show that endogenous ARF6 in wild-type fetal hepatocytes is activated in response to HGF stimulation. These results provide evidence that ARF6 is an essential component in the signaling pathway coupling HGF signaling to hepatic cord formation.  相似文献   

13.
Autoimmune hepatitis (AIH) is a chronic liver disease due to autoimmune system attacks hepatocytes and causes inflammation and fibrosis. Intracellular signalling and miRNA may play an important role in regulation of liver injury. This study aimed to investigate the potential roles of microRNA 143 in a murine AIH model and a hepatocyte injury model. Murine AIH model was induced by hepatic antigen S100, and hepatocyte injury model was induced by LPS. Mice and AML12 cells were separated into six groups with or without the treatment of miRNA‐143. Inflammation and fibrosis as well as gene expression were examined by different cellular and molecular techniques. The model was successfully established with the elevation of ALT and AST as well as inflammatory and fibrotic markers. Infection or transfection of mir‐143 in mice or hepatocytes significantly attenuated the development of alleviation of hepatocyte injury. Moreover, the study demonstrated phosphorylation of TAK1‐mediated miRNA‐143 regulation of hepatic inflammation and fibrosis as well as hepatocyte injury. Our studies demonstrated a significant role of miRNA‐143 in attenuation of liver injury in AIH mice and hepatocytes. miRNA‐143 regulates inflammation and fibrosis through its regulation of TAK1 phosphorylation, which warrants TAK1 as a target for the development of new therapeutic strategy of autoimmune hepatitis.  相似文献   

14.
Increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in parallel with the obesity epidemic has been a major public health concern. NAFLD is the most common chronic liver disease in the United States, ranging from fatty liver to steatohepatitis, fibrosis and cirrhosis in the liver. In response to chronic liver injury, fibrogenesis in the liver occurs as a protective response; however, prolonged and dysregulated fibrogenesis can lead to liver fibrosis, which can further progress to cirrhosis and eventually hepatocellular carcinoma. Interplay of hepatocytes, macrophages and hepatic stellate cells (HSCs) in the hepatic inflammatory and oxidative milieu is critical for the development of NAFLD. In particular, HSCs play a major role in the production of extracellular matrix proteins. Studies have demonstrated that bioactive food components and natural products, including astaxanthin, curcumin, blueberry, silymarin, coffee, vitamin C, vitamin E, vitamin D, resveratrol, quercetin and epigallocatechin-3-gallate, have antifibrotic effects in the liver. This review summarizes current knowledge of the mechanistic insight into the antifibrotic actions of the aforementioned bioactive food components.  相似文献   

15.
Since methods to disperse and culture hepatocytes were developed 15 years ago, numerous investigations have shown that primary cultures of mature hepatocytes retain most liver functions and respond as well to various hormones as those in vivo. Thus they are the most suitable system in vitro for studies on the liver. Moreover, recently it was found that differentiated hepatocytes in culture can grow under certain conditions and that this growth is regulated not only by several hormones, such as insulin, epidermal growth factor and serum growth factor, but also by a cell membrane factor and proteins in the environmental matrix through cell contact. This article describes the biochemical characterization of regulatory factors for hepatocyte growth and functions and their reciprocal expression. The mechanisms of liver regeneration, differentiation and carcinogenesis and the importance of the tissue architecture for these events are discussed mainly on the basis of our findings.  相似文献   

16.
A hybrid bioartificial liver device supporting a large mass of cells expressing differentiated hepatocyte metabolic capabilities is necessary for the successful treatment of fulminant hepatic failure. The three-compartment gel-entrapment porcine hepatocyte bioartificial liver was designed to provide "bridge" support to transplantation or until native liver recovery is achieved for patients with acute liver failure. The device is an automated mammalian cell culture system supporting 6-7 × 109 porcine hepatocytes entrapped in a collagen matrix and inoculated into the capillary lumen spaces of two 100 kDa molecular mass cut-off hollow fiber bioreactors. Gel contraction recreates a small lumen space within the hollow fiber which allows for the delivery of a nutrient medium. This configuration supported hepatocyte viability and differentiated phenotype as measured by albumin synthesis, ureagenesis, oxygen consumption, and vital dye staining during both cell culture and ex vivo application. The hollow fiber membrane was also shown to isolate the cells from xenogenic immunoglobulin attack. The gel-entrapment bioartificial liver maintained a large mass of functional hepatocytes by providing a three-dimensional cell culture matrix, by delivering basal nutrients through lumen media perfusion, and by preventing rejection of the xenocytes. These features make this device a favorable candidate for the treatment of clinical fulminant hepatic failure.  相似文献   

17.
Hepatic stellate cells (HSCs) are important part of the local 'stem cell niche' for hepatic progenitor cells (HPCs) and hepatocytes. However, it is unclear as to whether the products of activated HSCs are required to attenuate hepatocyte injury, enhance liver regeneration, or both. In this study, we performed 'loss of function' studies by depleting activated HSCs with gliotoxin. It was demonstrated that a significantly severe liver damage and declined survival rate were correlated with depletion of activated HSCs. Furthermore, diminishing HSC activation resulted in a 3-fold increase in hepatocyte apoptosis and a 66% decrease in the number of proliferating hepatocytes. This was accompanied by a dramatic decrease in the expression levels of five genes known to be up-regulated during hepatocyte replication. In particular, it was found that depletion of activated HSCs inhibited oval cell reaction that was confirmed by decreased numbers of Pank-positive cells around the portal tracts and lowered gene expression level of cytokeratin 19 (CK19) in gliotoxin-treated liver. These data provide clear evidence that the activated HSCs are involved in both hepatocyte death and proliferation of hepatocytes and HPCs in acetaminophen (APAP)-induced acute liver injury.  相似文献   

18.
The role of non-parenchymal cells in liver growth   总被引:11,自引:0,他引:11  
The main non-parenchymal cells of the liver, Kupffer cells, sinusoidal endothelial cells and stellate cells, participate in liver growth with respect to both their own proliferation, and effects on hepatocyte proliferation. In the well-characterised paradigm of 70% partial hepatectomy, they undergo DNA synthesis and cell division 20-24h later than the hepatocyte population. They exert both positive and negative influences on hepatocyte proliferation, including provision of an extracellular matrix-bound reservoir of hepatocyte growth factor that is activated after damage; priming of hepatocytes for DNA synthesis through rapid generation of TNF-alpha and IL-6; and generation of factors at later time points that curb hepatocyte DNA synthesis (IL-1, TGF-beta) and initiate reconstruction and reformation of matrix proteins.  相似文献   

19.
Study of hepatocyte differentiation using embryonic stem cells   总被引:9,自引:0,他引:9  
The liver has many crucial functions including metabolizing dietary molecules, detoxifying compounds, and storing glycogen. The hepatocytes, comprising most of the liver organ, progressively modify their gene expression profile during the fetal development according to their roles in the different phases of development. Embryonic stem (ES) cells serve as a major tool in understanding liver development. These cells may also serve as a source of hepatic cells for cellular therapy. In this review, we aim to summarize the research that has been performed in the field of hepatocyte differentiation from mouse and human ES cells. We discuss the various methodologies for the differentiation of ES cells towards hepatic cells using either spontaneous or directed differentiation protocols. Although many protocols for differentiating ES cells to hepatic cells have been developed, the analysis of their status is not trivial and can lead to various conclusions. Hence, we discuss the issues of analyzing hepatocytes by means of the specificity of the markers for hepatocytes and the status of the cells as fetal or adult hepatocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号