首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
Seed priming (controlled imbibition) is a widely used technique for improving crop establishment, because it allows a reduction of the time to radicle emergence following seed imbibition and synchronization of individual seeds within seed lots with respect to germination timing. The major problem encountered in seed priming is the control of seed imbibition to a level permitting pre-germinative processes to proceed but that blocks radicle emergence. If not, the consequence of drying back the seeds to initial moisture content for storage purposes could be a total loss of the treated batch. This is because, as long as radicle growth has not begun, seeds may be re-dried without any permanent deleterious effects upon subsequent germination or growth. Recently, we reported the discovery of a molecular marker of sugar beet seed priming, corresponding to the basic B-subunit of the seed storage protein 11S globulin. An ELISA based upon this molecular marker has been used to analyse how different sugar beet seed lots respond to a priming treatment. The results demonstrate that this ELISA allows us to readily distinguish between the primed seeds and the corresponding untreated seeds.  相似文献   

2.
Controlled hydration of seeds followed by drying (seed priming) is used to break dormancy, speed germination, and improve uniformity of radicle emergence. To date, empirical trials are used to predict optimal priming conditions for a given seed lot. Since priming is based upon seed water relations, it was hypothesized that the sensitivity of germination to reduced water potential before priming might be mechanistically related to, and therefore predictive of, priming responsiveness. Analyses of germination of 13 tomato (Lycopersicon esculentum Mill.) seed lots at two temperatures (15C and 20C) and three water potentials (0, -0.28 and -0.43 MPa) showed that seed lot germination responses could be quantitatively characterized by parameters derived from thermal time, hydrotime, and hydrothermal time models (R20.73-0.99). Six of the seed lots were primed at two temperatures (15°C and 20°C) and three water potentials (-1.0, -1.5 and -2.0 MPa) for various durations, dried, and their subsequent germination rates analysed according to hydropriming time and hydrothermal priming time models. The responses of germination rates to priming were characterized by hydropriming time (HP) and hydrothermal priming time (HTP) constants and the minimum water potential (min) and temperature (Tmin) for achieving a priming effect. The values of min and Tmin varied relatively little among tomato seed lots, and the generalized values of min=2.39 MPa and Tmin=9.10°C accounted for 74% (15°C), 57% (20°C), and 62% (across both temperatures) of the increase in germination rates following priming. Nonetheless, while the hydrothermal time models described germination patterns both before and after priming, there was relatively little predictive relationship between them.  相似文献   

3.
Proteomic analysis of arabidopsis seed germination and priming   总被引:33,自引:0,他引:33       下载免费PDF全文
To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.  相似文献   

4.
We studied cell cycle events in embryos of tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds during imbibition in water and during osmoconditioning ("priming") using both quantitative and cytological analysis of DNA synthesis and beta-tubulin accumulation. Most embryonic nuclei of dry, untreated control seeds were arrested in the G(1) phase of the cell cycle. This indicated the absence of DNA synthesis (the S-phase), as confirmed by the absence of bromodeoxyuridine incorporation. In addition, beta-tubulin was not detected on western blots and microtubules were not present. During imbibition in water, DNA synthesis was activated in the radicle tip and then spread toward the cotyledons, resulting in an increase in the number of nuclei in G(2). Concomitantly, beta-tubulin accumulated and was assembled into microtubular cytoskeleton networks. Both of these cell cycle events preceded cell expansion and division and subsequent growth of the radicle through the seed coat. The activation of DNA synthesis and the formation of microtubular cytoskeleton networks were also observed throughout the embryo when seeds were osmoconditioned. However, this pre-activation of the cell cycle appeared to become arrested in the G(2) phase since no mitosis was observed. The pre-activation of cell cycle events in osmoconditioned seeds appeared to be correlated with enhanced germination performance during re-imbibition in water.  相似文献   

5.
DNA synthetic activity in the radicle meristem of embryos of germinating seeds of the obligate root parasites, Alectra vogelii and Striga gesnerioides was followed by autoradiography of 3H-thymidine incorporation. Incorporation of 3H-thymidine occurred in the nuclei of cells destined to form the vascular tissues, ground meristem and epidermis. An analysis of the distribution of labeled nuclei demonstrated the presence of a quiescent center of 2-4 cells in the radicle at the beginning of seed germination, becoming more prominent at later stages of germination. During continued growth of the radicle which resulted in a reduction in size of the meristem, cells of the original quiescent center were activated to undergo DNA synthesis.  相似文献   

6.
Flow cytometric analyses of nuclear DNA levels were carriedout during development, stratification and germination of dormantseeds from three tree species with contrasting characteristics.Norway maple (Acer platanoides) and sycamore (Acer pseudoplatanus)have orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive)storage behaviours, respectively, and require only a periodof cold to break dormancy, whereas, orthodox cherry (Prunusavium) seeds require an initial warm period before cold stratificationto fully stimulate germination. Whole embryos and radicle tipsof both Norway maple and sycamore were found to have stablehigh levels of 4C DNA during the latter stages of developmentand both contained nuclei arrested at the 2C and 4C levels atmaturity. Mature cherry embryos had nuclei predominantly arrestedat the 2C level. This suggests that the acquisition of desiccationtolerance is not correlated with the arrest of the cell cycleat any particular nuclear DNA level. Neither DNA replicationin radicle cells nor germination occurred when seeds were maintainedmoist at a constant 20 °C. However, in the late stages ofcold treatment during stratification, nuclear DNA levels inradicle cells changed in advance of radicle emergence in theorthodox Norway maple and cherry, whereas in the recalcitrantsycamore, change was not recorded until after radicle emergence.These results show that DNA replication has potential use asan indicator of the progress of tree seeds through stratificationtreatments used to break some types of dormancy. The ways inwhich this indicator could be exploited for seed quality andperformance testing are discussed.Copyright 1998 Annals of BotanyCompany Norway maple,Acer platanoidesL., sycamore,Acer pseudoplatanusL., cherry,Prunus aviumL., DNA replication, flow cytometry, seed dormancy, stratification  相似文献   

7.
Deteriorated wheat seed lots were osmotically primed and surface-dried,dried-back, then aged for two more weeks Osmotic priming didnot affect the final germination in any of the aged seed lots,but mean germination time was decreased The response of unagedseed lot to treatments was studied in the following the timecourses of germination, as well as L-[4, 5-2H]leucine and [6-3H]thymidineincorporation (as a measure of protein and DNA synthesis, respectively)into dissected embryos during the early hours of germinationIt was found that the variation in mean germination time andthe rate of synthetic reactions were related The greatest improvementin the components of seed lot quality was achieved after primingand surface drying The beneficial effects of priming were apparenteven after dehydration followed by two further weeks of ageingCumulative correlations between mean germination time and variousbiochemical tests in variously treated aged seed lots were highlysignificant The physiological processes involved in deteriorationand recovery and the potential application of biochemical testsin detecting vigour changes are discussed Triticum durum, seed, ageing, osmotic priming, mean germination time, protein DNA synthesis  相似文献   

8.
Carrot and leek seed was osmotically primed in polyethylene glycol solution (273 g/kg water and 342 g/kg water respectively) for 10, 14 or 17 days before accelerated ageing for 0, 24, 48, 72 or 96 h. Priming reduced the germination time compared with non-primed seed. Accelerated ageing increased germination and emergence times and decreased percentage germination and emergence to a greater extent for the primed seeds than for non-primed seeds in both species. Primed and dried but non-aged seed from both species was stored at 10°C for 12 months. There was no loss of viability and improvements in germination time due to priming were maintained throughout the storage period for all the priming treatments in leek, and for the 10 and 14 day priming treatments in carrot. Carrot seed primed for 17 days lost some viability after 12 months storage compared with non-stored seed.  相似文献   

9.
The germination and emergence characteristics, and early seedling growth, of carrot seeds cv. Chantenay red-cored from different sources with a range of germination from 54–94%, was compared. Seeds from protected crops (mean temperature of growth 21°C, r.h. 45–70%) gave higher percentage germination than those from crops grown outdoors (mean temperature 15°C, 70–100% r.h.). Germination was also higher from mature (seed moisture content at harvest 20% or lower) than immature seed (seed moisture content at harvest between 20 and 60%). High percentage germination (>90%) was associated with low mean germination times and low spreads of germination times whilst the reverse was true for low percentage germination. Similar relationships were found for seedling emergence characters in the field although a lower proportion of the viable seeds produced seedlings from slowly than rapidly germinating seed lots. In general, seed lots having a low percentage germination gave greater variability in plant weight than those of higher percentage germination. There was no effect of seed source on radicle or shoot relative growth rates or on post-emergence seedling growth rates.  相似文献   

10.
凋落物物理阻隔对格氏栲种子萌发及胚根生长的影响   总被引:1,自引:0,他引:1  
朱静  刘金福  何中声  邢聪  王雪琳  江蓝 《生态学报》2020,40(16):5630-5637
为了探讨凋落物物理阻隔对格氏栲天然林自然更新状况的影响,通过模拟野外凋落物覆盖,设置格氏栲种子上层覆盖厚0 cm(CK)、2 cm(D2)、4 cm(D4)、6 cm(D6)、8 cm(D8)及种子下层铺垫厚2 cm(U2)、4 cm(U4)凋落物等7个处理,分析凋落物覆盖方式及厚度对格氏栲种子萌发及胚根生长的影响。结果表明:(1)凋落物覆盖方式及厚度对种子萌发进程存在显著影响。CK萌发持续时间最长,上层覆盖处理(D)次之,下层铺垫处理(U)的种子起始萌发时间显著滞后。(2)CK种子萌发率最高,其次D6处理发芽速度较快,发芽整齐;U处理较D处理的发芽率及发芽势均显著降低,且萌发抑制率显著增加。(3)D处理的种子胚根生长速度快,胚根长度大于CK;U处理的种子胚根生长速度呈先慢后快趋势。可见,凋落物是影响格氏栲种子萌发及胚根生长的重要因素,主要通过阻碍种子与土壤接触而抑制萌发,影响格氏栲林更新。  相似文献   

11.
Flow cytometric determination of DNA levels in embryos of fullymatured dry tomato (Lycopersicon esculenium) seeds revealedlarge amounts of 2C DNA signals, indicating that most cellshad arrested in the cell cycle at the presynthetic G1 phaseof nuclear division. After imbibition in water, an augmentationof the 4C signal in the embryonic root tip region was found.This increase could be ascribed to cells entering the syntheticphase of nuclear division leading towards the doubling of chromosomalmaterial. In the root tip cells, 4C:2C ratios increased I dafter imbibition in water though radicle emergence started 2d later. Apparently, DNA synthesis preceded germination. Onlya small increase in the number of cells with 4C DNA levels wasfound in the rest of the embryonic tissues. In whole dry seeds,DNA histograms revealed both a 2C signal and a considerable6C peak, the latter originating from the endoreduplicated endosperm. A priming period of 14 d in PEG-6000 considerably enhanced therate and uniformity of germination. In the ungerminated seeds,the 4C DNA signal of root tip cells started to increase after3 d incubation in PEG. The ratio of 4C:2C steadily increasedduring the 14 d priming period, though did not reach the levelobtained after hydration in water. Upon priming, the 4C:2C ratiowas constant after redrying the seeds towards the original moisturecontent, indicating that the chromosomal material in the rootcells had stably ceased cell cycle activity at the G2 phase.The present results indicate that the beneficial effects ofpriming on seedling performance are associated with the actionof replicative DNA synthetic processes prior to germination. Lycopersicon esculeniumMill, tomato, DNA content, flow cytometry, priming, seed, nuclear replication stage, C levels  相似文献   

12.
The laboratory germination (criterion radicle emergence) of seven seed lots of winter wheat cv. Slejpner was similar. However, they differed in vigour as demonstrated by differences in germination after controlled deterioration carried out at a range of seed moisture contents, at two temperatures and for different times. A vigour assessment for each lot was quantified by calculating a value for the seed lot constant Ki, of the viability equation. Germination in lower water potentials reduced the uptake of water, radicle and coleoptile emergence and radicle and coleoptile extension. There was no difference in the water uptake of seed lots differing in vigour. However, seed lots of lower vigour showed less radicle emergence, less coleoptile emergence and shorter radicles than higher vigour seed lots in low water potentials. Similarly, controlled deterioration resulted in reduced radicle and coleoptile emergence and growth compared to unaged seed, and also to a greater sensitivity to low water potentials. The implications for field establishment are discussed.  相似文献   

13.
Three batches of leek seeds were osmotically primed successively in the same polyethylene glycol solution in a bubble column at a seed concentration of 100 g/litre for seven days at 15°C. Three batches of carrot seeds were similarly primed in a separate solution for six days at 15°C. The concentration of microorganisms in the solutions increased rapidly during priming of the first seed batch for both seed types, but increases during priming of the second and third batches were small. The seeds were the main source of the microorganisms; priming reduced the numbers of colonies of filamentous fungi and increased those of bacteria and yeasts. The priming treatments improved the percentage germination of the three seed batches of primed carrots and reduced the mean time to germination in both species and the mean time to emergence in compost. Percentage emergence was not affected by priming except in the third batch of primed carrot seed. The presence of large numbers of microorganisms in the priming solutions did not greatly affect seed performance when the same osmoticum was used three times with leeks and twice with carrots. Priming did not affect the number of abnormal seedlings.  相似文献   

14.
Using flow cytometric analyses of the nuclear DNA content, westudied the effects of various conditions of osmopriming onthe activation of the cell cycle in embryo root tips of tomato(Lycopersicon esculentum‘Elko’) seeds. In dry untreatedseeds, 90.7% of the nuclei revealed 2C signals. Priming of seedsin polyethylene glycol-8000 (PEG) improved the germination rateof seeds transferred onto water at 15 °C. This was associatedwith an increase in 4C signals when priming was carried outat -1.0 and -1.5 MPa. Priming at -2.0 MPa enhanced subsequentgermination but had no effect on DNA replication. For temperaturesduring priming up to 25 °C, a positive linear correlationexisted between the efficiency of the treatment, evaluated bythe reciprocal of time to obtain 50% germination at 15 °C,and the frequency of 4C nuclei or the 4C/2C values. Such a correlationdid not exist when priming was performed at higher temperatures.At least 5% oxygen in the atmosphere was required during primingfor the induction of DNA replication and for the enhancementof subsequent germination. In the presence of 5x10-4M and 10-3MNaN3during priming, most of the cells were maintained with 2CDNA levels and the treatment had no stimulatory effect on germination.The results show a positive linear relationship between thefrequency of 4C DNA nuclei or the 4C/2C ratio and the improvingeffect of priming. However, in suboptimal conditions of priming(-2.0 MPa or temperatures higher than 25 °C), the improvementof seed germination was not associated with the onset of DNAreplication.Copyright 1999 Annals of Botany Company Cell cycle, germination, osmopriming, oxygen, temperature, Lycopersicon esculentum, tomato.  相似文献   

15.
During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.  相似文献   

16.
郑晓鹰  李秀清   《广西植物》2007,27(3):503-507,456
利用单粒种子凝胶扩散法研究了β-半乳甘露聚糖酶在西瓜种子萌发过程中的分布以及与西瓜种子萌发速率的关系。结果发现,在胚根尖突破种皮前吸胀的西瓜种子中,内源β-半乳甘露聚糖酶主要分布于种子的胚膜套中,并起到减弱外种皮和胚膜套细胞壁对胚根伸出的机械阻力的作用。对具有不同萌发速率的品种以及引发处理和未处理的西瓜种子中酶活性的检测证明,β-半乳甘露聚糖酶活性与西瓜种子萌发速度相关。固体基质引发三倍体西瓜种子过程中β-半乳甘露聚糖酶的活化和种皮阻力的减弱,是引发种子提高了萌发速度和萌发能力的原因之一。  相似文献   

17.
Abscisic acid (ABA) was used as a reversible block to the progressof carrot seed germination in a practical seed treatment. Pre-treatingseeds with 10–4M ABA solution at 15 °C for 12 d gave93% germination of viable seeds on subsequent transfer to waterbefore radicle lengths became too long for fluid drilling. Thiscompared with only 31 % without pre-treatment ABA pretreatment significantly increased the synchrony of carrotseed germination and did not affect final percentage germinationor early seedling growth rates. Seedling emergence from ABA-treatedgerminating seeds was earlier and more uniform than from untreatedgerminating seeds and seedlings from both these treatments emergedbefore those from ungerminated seeds Daucus carota L., carrot, germination, seed treatment, fluid drilling, abscisic acid, radicle extension  相似文献   

18.
19.
Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 °C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 °C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.  相似文献   

20.
This study was carried out to determine the effects of seven kinds of priming, gibberellic acid (GA), salicylic acid (SA), citric acid (CA), sodium chloride (NaCl), potassium chloride (KCl), zinc (Zn) and iron (Fe) on seed germination and seedling emergence of garden cress (Lepidium sativum) under arsenic stress. Results revealed that germination percentage (GP), seed vigor index (SVI), radicle length (RL), plumule length (PL) and tolerance index (TI) were significantly decreased when arsenic stress was augmented from 0 to 100 mg L?1. Nevertheless, primed seeds (hormo, nutri and halo-priming) increased seed germination and seedling emergence and tolerance index of L. sativum. Phytotoxicity was also reduced by priming practices. Meanwhile, priming with gibberellic acid (GA) had the most positive effects on measured traits. Generally, the order of the effect of priming treatments tested decreases by the following order: GA > CA > KCl > Fe > Zn > SA > NaCl. The result of this study is coherent with the hypothesis that under heavy metal stress, priming can develop seed germination performance and seedling emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号