首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Limited population structure is predicted for vagile, generalist species, such as the grey wolf (Canis lupus L.). Our aims were to study how genetic variability of grey wolves was distributed in an area comprising different habitats that lay within the potential dispersal range of an individual and to make inferences about the impact of ecology on population structure. Location British Columbia, Canada – which is characterized by a continuum of biogeoclimatic zones across which grey wolves are distributed – and adjacent areas in both Canada and Alaska, United States. Methods We obtained mitochondrial DNA control region sequences from grey wolves from across the province and integrated our genetic results with data on phenotype, behaviour and ecology (distance, habitat and prey composition). We also compared the genetic diversity and differentiation of British Columbia grey wolves with those of other North American wolf populations. Results We found strong genetic differentiation between adjacent populations of grey wolves from coastal and inland British Columbia. We show that the most likely factor explaining this differentiation is habitat discontinuity between the coastal and interior regions of British Columbia, as opposed to geographic distance or physical barriers to dispersal. We hypothesize that dispersing grey wolves select habitats similar to the one in which they were reared, and that this differentiation is maintained largely through behavioural mechanisms. Main conclusions The identification of strong genetic structure on a scale within the dispersing capabilities of an individual suggests that ecological factors are driving wolf differentiation in British Columbia. Coastal wolves are highly distinct and representative of a unique ecosystem, whereas inland British Columbia grey wolves are more similar to adjacent populations of wolves located in Alaska, Alberta and Northwest Territories. Given their unique ecological, morphological, behavioural and genetic characteristics, grey wolves of coastal British Columbia should be considered an Evolutionary Significant Unit (ESU) and, consequently, warrant special conservation status. If ecology can drive differentiation in a highly mobile generalist such as the grey wolf, ecology probably drives differentiation in many other species as well.  相似文献   

2.
Life‐history transitions have evolved repeatedly in numerous taxa, although the ecological and evolutionary conditions favouring such transitions in the presence of gene flow remain poorly understood. The present study aimed to disentangle the effects of isolation‐by‐distance and isolation‐by‐environment on genetic differentiation between two sympatric life‐history ecotypes. Using 14 microsatellite loci, we first characterized amphidromous and freshwater groups of Cottus asper in a high gene flow setting in the Lower Fraser River system (south‐western British Columbia, Canada) to test for the effects of habitat and geographical distance on the distribution of life‐history ecotypes. Within the main river channel, no genetic differentiation was found, whereas tributaries even close to the estuary were genetically differentiated. Partial mantel tests confirmed that genetic differentiation between river tributaries and the main channel was independent from geographical distance, with distance‐scaled migration rates indicating reduced gene flow from the main channel into the tributaries. Our results suggest that isolation‐by‐environment can play an important role for the early stage of life‐history transitions, and may promote differentiation among life‐history ecotypes despite the presence of gene flow. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 943–957.  相似文献   

3.
The genetic structure of eulachon (Thaleichthys pacificus) populations was examined in an analysis of variation of 14 microsatellite loci representing approximately 1900 fish from 9 sites between the Columbia River and Cook Inlet, Alaska. Significant genetic differentiation occurred among the putative populations. The mean FST for all loci was 0.0046, and there was a significant correlation between population genetic differentiation (FST) and geographic distance. Simulated mixed-stock samples comprising populations from different regions suggested that variation at microsatellite loci provided reasonably accurate estimates of stock composition for potential fishery samples. Marine sampling indicated that immature eulachons from different rivers, during the 2 to 3 years of prespawning life in offshore marine waters, do not mix thoroughly. For eulachons captured incidentally in offshore trawl fisheries, there was a clear geographic cline in relative abundance of eulachons from different geographic areas. The sample from northern British Columbia was dominated by northern and central coastal populations of British Columbia, the sample from central British Columbia was composed of eulachons from all regions, and the sample from southern British Columbia was dominated by Columbia River and Fraser River populations. These results have implications for the management of trawl fisheries and conservation of spawning populations in some rivers where abundance is at historically low levels.  相似文献   

4.
Patiria miniata, a broadcast‐spawning sea star species with high dispersal potential, has a geographic range in the intertidal zone of the northeast Pacific Ocean from Alaska to California that is characterized by a large range gap in Washington and Oregon. We analyzed spatial genetic variation across the P. miniata range using multilocus sequence data (mtDNA, nuclear introns) and multilocus genotype data (microsatellites). We found a strong phylogeographic break at Queen Charlotte Sound in British Columbia that was not in the location predicted by the geographical distribution of the populations. However, this population genetic discontinuity does correspond to previously described phylogeographic breaks in other species. Northern populations from Alaska and Haida Gwaii were strongly differentiated from all southern populations from Vancouver Island and California. Populations from Vancouver Island and California were undifferentiated with evidence of high gene flow or very recent separation across the range disjunction between them. The surprising and discordant spatial distribution of populations and alleles suggests that historical vicariance (possibly caused by glaciations) and contemporary dispersal barriers (possibly caused by oceanographic conditions) both shape population genetic structure in this species.  相似文献   

5.
Aim In contrast to angiosperms, bryophytes do not appear to have radiated in Macaronesia and the western Mediterranean. We evaluate if: (1) the apparent lack of radiation in bryophytes reflects our failure to recognize cryptic endemic species; (2) bryophytes are characterized by extremely low evolutionary rates; or (3) bryophytes have a high dispersal ability, which prevents genetic isolation. Location Worldwide, with a special emphasis on Macaronesia and the western Mediterranean. Methods Three chloroplast regions were sequenced from samples of the moss Grimmia montana from its entire distribution range. Network analyses, Fst and Nst statistics were used to describe and interpret the phylogeographical signal in the data. Results Despite significant phylogeographical signal in the chloroplast genome, which demonstrates limits to gene flow at the continental scale, repeated sister group relationships observed among accessions from different geographical areas suggest recurrent colonization patterns. These observations are consistent with mounting evidence that intercontinental distributions exhibited by many bryophyte species result from long‐distance dispersal rather than continental drift. Madeiran and western Mediterranean island haplotypes are either shared by, or closely related to, European and North American ones. Fst values between Madeira, western Mediterranean islands, North America and Europe are not significantly different from zero, and suggest that Madeira and the south‐western Mediterranean are subject to strong transatlantic gene flow. By contrast, haplotypes found in the Canary Islands are shared or closely related to those of populations from south‐western Europe or southern Africa. Main conclusions Multiple origins and colonization events are not consistent with the hypothesis of a relictual origin of the Macaronesian moss flora. One possible reason for the failure of taxa that experienced multiple colonization events to radiate is niche pre‐emption. We suggest that strong gene flow, coupled with the occupancy of all suitable niches, either by earlier conspecific colonizers or by other species, could be the mechanism preventing island radiation in G. montana and other cryptogams with high long‐distance dispersal abilities.  相似文献   

6.
To assess genetic diversity in the blue-listed purple martin (Progne subis) population in British Columbia, we analysed mitochondrial control region sequences of 93 individuals from British Columbia and 121 individuals collected from seven localities of the western and eastern North American subspecies P. s. arboricola and P. s. subis, respectively. Of the 47 haplotypes we detected, 34 were found exclusively in western populations, and 12 were found only in eastern populations. The most common eastern haplotype (25) was also found in three nestlings in British Columbia and one in Washington. Another British Columbia nestling had a haplotype (35) that differed by a C to T transition from haplotype 25. Coalescent analysis indicated that these five nestlings are probably descendents of recent immigrants dispersing from east to the west, because populations were estimated to have diverged about 200,000–400,000 ybp, making ancestral polymorphism a less likely explanation. Maximum likelihood estimates of gene flow among all populations detected asymmetrical gene flow into British Columbia not only of rare migrants from the eastern subspecies in Alberta but also a substantial number of migrants from the adjacent Washington population, and progressively lower numbers from Oregon in an isolation-by distance pattern. The influx of migrants from different populations is consistent with the migrant-pool model of recolonization which has maintained high genetic diversity in the small recovering population in British Columbia. Thus, the risk to this population is not from genetic erosion or inbreeding following a severe population crash, but from demographic stochasticity and extinction in small populations.  相似文献   

7.
The dispersal and history of species affects their genetic population structure at both small and large geographical scales. The common whelk, Buccinum undatum, is a widespread subtidal gastropod in the North Atlantic that has no planktonic larvae and has thus limited dispersal capacity. The snail, which has been harvested by humans for centuries, is highly variable in morphology. To evaluate the population structure in the rich fishing grounds in western Iceland and its divergence from samples across the Atlantic, genetic patterns based on sequence variation in two mitochondrial (mt)DNA genes (COI and 16S) and five microsatellites were studied and compared with variation in populations from both sides of the Atlantic. Significant differences in allele and haplotype frequencies were found among samples separated by short distances along the coast of Iceland. Partition of the variation showed larger variance among samples obtained from distant regions than from neighbouring sites and genetic distances were correlated with geographical distance among populations in Europe. Phylogeographic patterns in mtDNA reveal different monophyletic lineages on both sides of the Atlantic, which predate the onset of the Ice Age and which may constitute cryptic species. Similar micro‐ and macrogeographical patterns were observed for the mtDNA and microsatellite markers, despite high frequencies of null alleles. Bayesian skyline reconstructions of the demographic history and mismatch distributions suggest that, although sizes of some populations were unaffected by Ice Age glaciations, others show signs of expansion after the Last Glacial Maximum. These phylogeographical patterns are consistent with patterns expected for low dispersal species that have survived in allopatric glacial refugial populations on both sides of the Atlantic and in deep‐sea refugia within each continent. The observed genetic structure has implications for conservation and sustainable management of the harvested populations. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 145–159.  相似文献   

8.
Understanding patterns of reproduction, dispersal and recruitment in deep‐sea communities is increasingly important with the need to manage resource extraction and conserve species diversity. Glass sponges are usually found in deep water (>1000 m) worldwide but form kilometre‐long reefs on the continental shelf of British Columbia and Alaska that are under threat from trawling and resource exploration. Due to their deep‐water habitat, larvae have not yet been found and the level of genetic connectivity between reefs and nonreef communities is unknown. The genetic structure of Aphrocallistes vastus, the primary reef‐building species in the Strait of Georgia (SoG) British Columbia, was studied using single nucleotide polymorphisms (SNPs). Pairwise comparisons of multilocus genotypes were used to assess whether sexual reproduction is common. Structure was examined 1) between individuals in reefs, 2) between reefs and 3) between sites in and outside the SoG. Sixty‐seven SNPs were genotyped in 91 samples from areas in and around the SoG, including four sponge reefs and nearby nonreef sites. The results show that sponge reefs are formed through sexual reproduction. Within a reef and across the SoG basin, the genetic distance between individuals does not vary with geographic distance (r = ?0.005 to 0.014), but populations within the SoG basin are genetically distinct from populations in Barkley Sound, on the west coast of Vancouver Island. Population structure was seen across all sample sites (global FST = 0.248), especially between SoG and non‐SoG locations (average pairwise FST = 0.251). Our results suggest that genetic mixing occurs across sponge reefs via larvae that disperse widely.  相似文献   

9.
Phylogenetic analyses were conducted for Astilbe (Saxifragaceae), an Asian/eastern North American disjunct genus, using sequences of nuclear ribosomal internal transcribed spacer (ITS) and plastid matK, trnL‐trnF and psbA‐trnH regions. The monophyly of Astilbe is well supported by both ITS and plastid sequences. Topological incongruence was detected between the plastid and the ITS trees, particularly concerning the placement of the single North American species, A. biternata, which may be most probably explained by its origin involving hybridization and/or allopolyploidy with plastid capture. In Astilbe, all species with hermaphroditic flowers constitute a well‐supported clade; dioecious species form a basal grade to the hermaphroditic clade. Astilbe was estimated to have split with Saxifragopsis from western North America at 20.69 Ma (95% HPD: 12.14–30.22 Ma) in the early Miocene. This intercontinental disjunction between Astilbe and Saxifragopsis most likely occurred via the Bering land bridge. The major clade of Astilbe (all species of the genus excluding A. platyphylla) was inferred to have a continental Asian origin. At least three subsequent migrations or dispersals were hypothesized to explain the expansion of Astilbe into North America, Japan and tropical Asian islands. The intercontinental disjunct lineage in Astilbe invokes a hybridization event either in eastern Asia or in North America. This disjunction in Astilbe may be explained by a Beringian migration around 3.54 Ma (95% high posterior density: 1.29–6.18 Ma) in the late Tertiary, although long‐distance dispersal from eastern Asia to North America is also likely. The biogeographical connection between continental Asia, Taiwan, the Philippines and other tropical Asian islands in Astilbe provides evidence for the close floristic affinity between temperate or alpine south‐western China and tropical Asia. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

10.
Given that East Asia is located south‐west of Beringia and was less glaciated during the Pleistocene, species at higher latitudes were able to expand their range in this region during climate cooling. Although southward migration is an inevitable colonization process, the biogeographical history of the disjunct ranges of higher‐latitude species in East Asia has been investigated less extensively. Here, we assess whether their disjunct distributions in the Japanese archipelago connected sufficiently with Beringia or persisted in isolation following their establishment. Sequences of nine nuclear loci were determined for Cassiope lycopodioides (Ericaceae) from the Japanese archipelago as well as its surrounding areas, Kamchatka and Alaska. According to the geographical pattern of genetic diversity, the northern populations from Kamchatka to the northern part of the Japanese archipelago were similar genetically and were differentiated from populations in central Japan. Our study suggested that the distribution of C. lycopodioides was connected between the northern part of the Japanese archipelago and south‐western Beringia due to Pleistocene climate cooling. Conversely, central Japan harboured a disjunct range after its establishment. These inferences suggest that widespread range expansion in northern East Asia was plausible for species distributed in Beringia. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 497–509.  相似文献   

11.
Intercontinental disjunct distributions are a main issue in current biogeography. Bryophytes usually have broad distribution ranges and therefore constitute an interesting subject of study in this context. During recent fieldwork in western North America and eastern Africa, we found new populations of a moss morphologically similar to Orthotrichum acuminatum. So far this species has been considered to be one of the most typical epiphytic mosses of the Mediterranean Basin. The new findings raise some puzzling questions. Do these new populations belong to cryptic species or do they belong to O. acuminatum, a species which then has a multiple‐continent disjunct range? In the latter case, how could such an intercontinental disjunction be explained? To answer these questions, an integrative study involving morphological and molecular approaches was conducted. Morphological results reveal that Californian and Ethiopian samples fall within the variability of those from the Mediterranean Basin. Similarly, phylogenetic analyses confirm the monophyly of these populations, showing that O. acuminatum is one of the few moss species with a distribution comprising the western Nearctic, the western Palaearctic and Palaeotropical eastern Africa. Pending a further genetic and phylogeographical study to support or reject the hypothesis, a process of long‐distance dispersal (LDD) is hypothesized to explain this distribution and the origin of the species is suggested to be the Mediterranean Basin, from where diaspores of the species may have migrated to California and Ethiopia. The spore release process in O. acuminatum is revisited to support the LDD hypothesis, © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 30–49.  相似文献   

12.
Resident (fish eating) killer whales (Orcinus orca) in the North Pacific have been the subject of long‐term studies in several geographical regions. The current study examines population parameters in the southern Alaska resident population from 1984 to 2010 and develops a population model. The southern Alaska resident population ranges from southeastern Alaska through the Kodiak archipelago and contains over 700 individuals. We follow the life histories of 343 identifiable whales in 10 pods from two clans born before and during the study. Population parameters were comparable to those of the British Columbia northern resident population during the 1970s and 1980s, except that age of maturity was approximately one year earlier. The average annual rate of increase was slightly higher in Alaska (3.5%) than for the British Columbia northern residents (2.9%) and probably represents a population at r‐max (maximum rate of growth). Reasons for the high growth rate in Alaska could be a recovery following past anthropogenic mortalities, or more likely, a response to increasing salmon returns in recent decades, resulting in an increase in carrying capacity. The slow maturation and low rate of reproductive response makes these whales slow to recover from natural or anthropogenic catastrophes.  相似文献   

13.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

14.
Hypericum nummularium has a strongly disjunct, bi‐areal distribution in Europe: it is abundant in the Pyrenees and grows in a very restricted part of the Alps, more than 1000 km away. My aim was to estimate the genetic divergence between these areas and to identify the factors responsible for the disjunction: glacial relicts, bidirectional colonization from a common refugium, long‐distance dispersal and/or human introduction? Internal transcribed spacers (ITS) sequencing (680 bp) and amplified fragment length polymorphism (AFLP) fingerprinting (104 polymorphic markers) showed very low differentiation between populations in the Alps and the Pyrenees, indicating that H. nummularium probably survived in a single refugium. Moreover, levels of genetic diversity were similar in the two areas, making human introduction and long‐distance dispersal unlikely. Thus, the species probably survived in one refugium, subsequently colonizing both areas more or less simultaneously. The comparison of genetic and geographical distances suggested a step by step migration in the Alps (isolation by distance), whereas random dispersal events were more likely in the Pyrenees. Finally, I discuss possible causes for the restricted distribution area of H. nummularium in the Alps (e.g. unsuitable habitat, low dispersal capacities) and conclude that strong human disturbance is probably the major limit to the expansion of the species in this region. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 437–447.  相似文献   

15.
Marbled murrelets (Brachyramphus marmoratus) are coastal seabirds that nest from California to the Aleutian Islands. They are declining and considered threatened in several regions. We compared variation in the mitochondrial control region, four nuclear introns and three microsatellite loci among194 murrelets from throughout their range except Washington and Oregon. Significant population genetic structure was found: nine private control region haplotypes and three private intron alleles occurred at high frequency in the Aleutians and California; global estimates of F ST or ΦST and most pairwise estimates involving the Aleutians and/or California were significant; and marked isolation-by-distance was found. Given the available samples, murrelets appear to comprise five genetic management units: (1) western Aleutian Islands, (2) central Aleutian Islands, (3) mainland Alaska and British Columbia, (4) northern California, and (5) central California.  相似文献   

16.
Phylogenetic analyses of mitochondrial DNA (mtDNA) sequences were used to assess the matriarchal genetic structure of the threespine stickleback, Gasterosteus aculeatus. A 747 base-pair (bp) fragment of the cytochrome b was sequenced from 36 individuals collected from 25 localities in Europe, North America, and Japan. Two major divergent clades were revealed: one widespread in Japan but with representatives in some Alaskan and British Columbian lakes and the other common in Europe and North America. A simple diagnostic test using the polymerase chain reaction (PCR) and a restriction enzyme was used to assay additional individuals, confirming the absence of the Japanese clade in the Atlantic basin. Geographic distribution of mtDNA variation suggests (1) a recent origin of the Atlantic populations, and (2) support for previous hypotheses about the existence of Pleistocene refugia for freshwater fishes in Alaska and British Columbia. Silent substitution rates were used to date the colonization of the Atlantic at 90,000 to 260,000 yr before present, which conflicts with earlier dates implied by the fossil record. The recent replacement of Atlantic mitochondrial lineages suggested by our data may be explained by severe reduction or extinction of northern Atlantic populations during the Pleistocene, followed by a recent reinvasion from the Pacific. With a global perspective of the distribution of genetic variation as a framework, meaningful comparisons at a smaller geographical scale will now be possible.  相似文献   

17.
Aim Phylogeographical patterns in the Ryukyu Archipelago have been explained primarily by landbridge formation and the opening of two straits in the Pliocene, namely the Tokara and Kerama gaps. These old straits have been considered to be the barriers most likely to determine genetic boundaries. To test this, we conducted a molecular analysis of the herb Ophiorrhiza japonica. We discuss the causes of and processes involved in its phylogeographical structure and explore aspects of island separation other than the duration of the straits to explain genetic boundaries at the gaps. Location Ryukyu Archipelago, Japan. Methods Plants were collected from 40 localities in the archipelago and vicinity. Non‐coding regions of chloroplast DNA were sequenced. The genealogical relationships among haplotypes were estimated using a statistical parsimony network. To examine the phylogeographical structure, we compared two parameters of population differentiation, namely GST and NST, and conducted correlation analysis of genetic and geographical distances. Genetic boundaries were identified using Monmonier’s maximum difference algorithm. To test vicariance–dispersal hypotheses, that is, vicariance after migration via the Pliocene landbridge or over‐sea dispersal in the Pleistocene, molecular dating analysis was conducted. Results A statistical parsimony network revealed that the haplotypes from the Ryukyu Archipelago and northwards coalesce to one ancestral haplotype in Taiwan. A clear phylogeographical structure was observed: plants within the same population and populations in geographical proximity were phylogenetically close. A genetic boundary was recognized across the Kerama Gap, but not across the Tokara Gap. Dating analysis suggested that population divergence across the Kerama Gap occurred in the early to late Pleistocene. Main conclusions The statistical parsimony network suggests migration from Taiwan and northward range expansion in the archipelago. Based on the divergence time, over‐sea dispersal in the Pleistocene is likely, although migration via a Pliocene landbridge is not totally rejected. Negligible genetic differentiation across the Tokara Gap suggests recent over‐sea dispersal, possibly facilitated by the small geographical width of the gap. Conversely, the large genetic differentiation across the Kerama Gap is probably explained by the large geographical distance across it. The past splitting of a landbridge would have had a significant influence on population differentiation after a certain geographical distance was reached.  相似文献   

18.
Phylogeographic patterns of intraspecific variation can provide insights into the population-level processes responsible for speciation and yield information useful for conservation purposes. To examine phylogeography and population structure in a migratory passerine bird at both continental and regional geographical scales, we analysed 344 bp of mitochondrial DNA (mtDNA) control region sequence from 155 yellow warblers (Dendroica petechia) collected from seven locations across Canada and from Alaska. There is a major subdivision between eastern (Manitoba to Newfoundland) and western (Alaska and British Columbia) populations which appears to have developed during the recent Pleistocene. Some localities within these two regions also differ significantly in their genetic composition, suggesting further subdivision on a regional geographical scale. Eastern and western birds form distinct phylogeographic entities and the clustering of all western haplotypes with two eastern haplotypes suggests that the western haplotypes may be derived from an eastern lineage. Analyses based on coalescent models support this explanation for the origin of western haplotypes. These results are consistent with important features of Mengel's model of warbler diversification. From a conservation perspective they also suggest that individual populations of migrant birds may form demographically isolated management units on a smaller scale than previously appreciated.  相似文献   

19.
Using flow cytometry and amplified fragment length polymorphism (AFLP), we explored the cytogeography and phylogeography of Hieracium intybaceum, a silicicolous species distributed in the Alps and spatially isolated in the Vosges Mountains and the Schwarzwald Mountains. We detected two ploidies, diploid and tetraploid, but no triploid or mixed‐ploidy populations. Whereas diploids are sexual and distributed all across the Alps, tetraploids are apomictic and seem to be confined to the western Alps and the Vosges. We detected a low level of genetic variation. Bayesian clustering identified four clusters/genetic groups, which are partly congruent with the ploidal pattern. The first two groups consisting exclusively of diploids dominate the whole distribution range in the Alps and show east–west geographical separation with a diffuse borderline running from eastern Switzerland to the eastern part of North Tyrol. The third genetic group lacks a defined geographical range and includes diploid and tetraploid plants. The last genetic group comprises tetraploid plants in the French Alps and the Vosges. We suppose that diploids colonized the deglaciated areas from source populations most likely located mainly in the southern part of the recent distribution range and occasionally also in the western Alps. Gene flow and further differentiation likely took place. Apomictic tetraploids most likely originated in the western Alps or in the refugium at the south‐western foot of the Alps. Their rather limited geographical range (partly contrasting with the theory of geographical parthenogenesis) can be explained by their rather recent origin. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 487–498.  相似文献   

20.
Propagule dispersal in plants is a fundamental mechanism for colonizing new sites and adapting to changing climates, as well as for maintaining genetic diversity. Contrasting past and current gene dispersal can provide useful insights to gauge the extent of recent human disturbances and guide management strategies. However, research on gene dispersal of plants is not yet exhaustive because evolutionary or environmental impacts are often species‐specific and most existing studies have focused on analysis of dispersal at a single site, which may not be helpful for landscape‐level inferences and management interventions. In the present study, we assessed whether current gene or propagule dispersal would be more restricted than past gene dispersal at multiple patches of the endangered medicinal tree, Prunus africana. We employed eight highly polymorphic microsatellite markers in conjunction with isolation‐by‐distance, spatial genetic structure (SGS), and parentage assignment models to estimate gene dispersal distance in a spatial extent of approximately 400 km2. There was no significant difference between gene dispersal distances across the different models (Friedman chi‐squared = 7.286, d.f. = 5, P = 0.2002). Estimates of current gene dispersal distance were comparable to dispersal in the last few generations. However, gene dispersal distance was much shorter in smaller than bigger forest patches. Further, significant (P < 0.05) SGS was detected in most forest patches, with the extent of SGS among adults being stronger in the smaller than bigger patches. These results suggest the need for practicing enrichment plantings in most forest patches, particularly in the smaller ones, to assist gene exchange among individuals and patches. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 887–904.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号