首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In the absence of consolidated pipelines to archive biological data electronically, information dispersed in the literature must be captured by manual annotation. Unfortunately, manual annotation is time consuming and the coverage of published interaction data is therefore far from complete. The use of text-mining tools to identify relevant publications and to assist in the initial information extraction could help to improve the efficiency of the curation process and, as a consequence, the database coverage of data available in the literature. The 2006 BioCreative competition was aimed at evaluating text-mining procedures in comparison with manual annotation of protein-protein interactions.

Results

To aid the BioCreative protein-protein interaction task, IntAct and MINT (Molecular INTeraction) provided both the training and the test datasets. Data from both databases are comparable because they were curated according to the same standards. During the manual curation process, the major cause of data loss in mining the articles for information was ambiguity in the mapping of the gene names to stable UniProtKB database identifiers. It was also observed that most of the information about interactions was contained only within the full-text of the publication; hence, text mining of protein-protein interaction data will require the analysis of the full-text of the articles and cannot be restricted to the abstract.

Conclusion

The development of text-mining tools to extract protein-protein interaction information may increase the literature coverage achieved by manual curation. To support the text-mining community, databases will highlight those sentences within the articles that describe the interactions. These will supply data-miners with a high quality dataset for algorithm development. Furthermore, the dictionary of terms created by the BioCreative competitors could enrich the synonym list of the PSI-MI (Proteomics Standards Initiative-Molecular Interactions) controlled vocabulary, which is used by both databases to annotate their data content.
  相似文献   

2.

Background  

Frequently, several alternative names are in use for biological objects such as genes and proteins. Applications like manual literature search, automated text-mining, named entity identification, gene/protein annotation, and linking of knowledge from different information sources require the knowledge of all used names referring to a given gene or protein. Various organism-specific or general public databases aim at organizing knowledge about genes and proteins. These databases can be used for deriving gene and protein name dictionaries. So far, little is known about the differences between databases in terms of size, ambiguities and overlap.  相似文献   

3.
Targeted analysis of protein termini   总被引:1,自引:0,他引:1  
  相似文献   

4.

Background  

While text-mining and distributed annotation systems both aim at capturing knowledge and presenting it in a standardized form, there have been few attempts to investigate potential synergies between these two fields. For instance, distributed annotation would be very well suited for providing topic focussed, expert knowledge enriched text corpora. A key limitation for this approach is the availability of literature annotation systems that can be routinely used by groups of collaborating researchers on a day to day basis, not distracting from the main focus of their work.  相似文献   

5.
6.

Background:

Genome sciences have experienced an increasing demand for efficient text-processing tools that can extract biologically relevant information from the growing amount of published literature. In response, a range of text-mining and information-extraction tools have recently been developed specifically for the biological domain. Such tools are only useful if they are designed to meet real-life tasks and if their performance can be estimated and compared. The BioCreative challenge (Critical Assessment of Information Extraction in Biology) consists of a collaborative initiative to provide a common evaluation framework for monitoring and assessing the state-of-the-art of text-mining systems applied to biologically relevant problems.

Results:

The Second BioCreative assessment (2006 to 2007) attracted 44 teams from 13 countries worldwide, with the aim of evaluating current information-extraction/text-mining technologies developed for one or more of the three tasks defined for this challenge evaluation. These tasks included the recognition of gene mentions in abstracts (gene mention task); the extraction of a list of unique identifiers for human genes mentioned in abstracts (gene normalization task); and finally the extraction of physical protein-protein interaction annotation-relevant information (protein-protein interaction task). The 'gold standard' data used for evaluating submissions for the third task was provided by the interaction databases MINT (Molecular Interaction Database) and IntAct.

Conclusion:

The Second BioCreative assessment almost doubled the number of participants for each individual task when compared with the first BioCreative assessment. An overall improvement in terms of balanced precision and recall was observed for the best submissions for the gene mention (F score 0.87); for the gene normalization task, the best results were comparable (F score 0.81) compared with results obtained for similar tasks posed at the first BioCreative challenge. In case of the protein-protein interaction task, the importance and difficulties of experimentally confirmed annotation extraction from full-text articles were explored, yielding different results depending on the step of the annotation extraction workflow. A common characteristic observed in all three tasks was that the combination of system outputs could yield better results than any single system. Finally, the development of the first text-mining meta-server was promoted within the context of this community challenge.
  相似文献   

7.
The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries.  相似文献   

8.

Background

The explosion in biological information creates the need for databases that are easy to develop, easy to maintain and can be easily manipulated by annotators who are most likely to be biologists. However, deployment of scalable and extensible databases is not an easy task and generally requires substantial expertise in database development.

Results

BioBuilder is a Zope-based software tool that was developed to facilitate intuitive creation of protein databases. Protein data can be entered and annotated through web forms along with the flexibility to add customized annotation features to protein entries. A built-in review system permits a global team of scientists to coordinate their annotation efforts. We have already used BioBuilder to develop Human Protein Reference Database http://www.hprd.org, a comprehensive annotated repository of the human proteome. The data can be exported in the extensible markup language (XML) format, which is rapidly becoming as the standard format for data exchange.

Conclusions

As the proteomic data for several organisms begins to accumulate, BioBuilder will prove to be an invaluable platform for functional annotation and development of customizable protein centric databases. BioBuilder is open source and is available under the terms of LGPL.  相似文献   

9.
Orchids are one of the most ecological and evolutionarily significant plants, and the Orchidaceae is one of the most abundant families of the angiosperms. Genetic databases will be useful not only for gene discovery but also for future genomic annotation. For this purpose, OrchidBase was established from 37,979,342 sequence reads collected from 11 in-house Phalaenopsis orchid cDNA libraries. Among them, 41,310 expressed sequence tags (ESTs) were obtained by using Sanger sequencing, whereas 37,908,032 reads were obtained by using next-generation sequencing (NGS) including both Roche 454 and Solexa Illumina sequencers. These reads were assembled into 8,501 contigs and 76,116 singletons, resulting in 84,617 non-redundant transcribed sequences with an average length of 459 bp. The analysis pipeline of the database is an automated system written in Perl and C#, and consists of the following components: automatic pre-processing of EST reads, assembly of raw sequences, annotation of the assembled sequences and storage of the analyzed information in SQL databases. A web application was implemented with HTML and a Microsoft .NET Framework C# program for browsing and querying the database, creating dynamic web pages on the client side, analyzing gene ontology (GO) and mapping annotated enzymes to KEGG pathways. The online resources for putative annotation can be searched either by text or by using BLAST, and the results can be explored on the website and downloaded. Consequently, the establishment of OrchidBase will provide researchers with a high-quality genetic resource for data mining and facilitate efficient experimental studies on orchid biology and biotechnology. The OrchidBase database is freely available at http://lab.fhes.tn.edu.tw/est.  相似文献   

10.
11.
Rother K  Michalsky E  Leser U 《Proteins》2005,60(4):571-576
We investigated to what extent Protein Data Bank (PDB) entries are annotated with second-party information based on existing cross-references between PDB and 15 other databases. We report 2 interesting findings. First, there is a clear "annotation gap" for structures less than 7 years old for secondary databases that are manually curated. Second, the examined databases overlap with each other quite well, dividing the PDB into 2 well-annotated thirds and one poorly annotated third. Both observations should be taken into account in any study depending on the selection of protein structures by their annotation.  相似文献   

12.
Public sequence databases contain information on the sequence, structure and function of proteins. Genome sequencing projects have led to a rapid increase in protein sequence information, but reliable, experimentally verified, information on protein function lags a long way behind. To address this deficit, functional annotation in protein databases is often inferred by sequence similarity to homologous, annotated proteins, with the attendant possibility of error. Now, the functional annotation in these homologous proteins may itself have been acquired through sequence similarity to yet other proteins, and it is generally not possible to determine how the functional annotation of any given protein has been acquired. Thus the possibility of chains of misannotation arises, a process we term 'error percolation'. With some simple assumptions, we develop a dynamical probabilistic model for these misannotation chains. By exploring the consequences of the model for annotation quality it is evident that this iterative approach leads to a systematic deterioration of database quality.  相似文献   

13.
The Genome Annotation Assessment Project tested current methods of gene identification, including a critical assessment of the accuracy of different methods. Two new databases have provided new resources for gene annotation: these are the InterPro database of protein domains and motifs, and the Gene Ontology database for terms that describe the molecular functions and biological roles of gene products. Efforts in genome annotation are most often based upon advances in computer systems that are specifically designed to deal with the tremendous amounts of data being generated by current sequencing projects. These efforts in analysis are being linked to new ways of visualizing computationally annotated genomes.  相似文献   

14.
Text-mining systems are indispensable tools to reduce the increasing flux of information in scientific literature to topics pertinent to a particular interest in focus. Most of the scientific literature is published as unstructured free text, complicating the development of data processing tools, which rely on structured information. To overcome the problems of free text analysis, structured, hand-curated information derived from literature is integrated in text-mining systems to improve precision and recall. In this paper several text-mining approaches are reviewed and the next step in development of text-mining systems, which is based on a concept of multiple lines of evidence, is described: results from literature analysis are combined with evidence from experiments and genome analysis to improve the accuracy of results and to generate additional knowledge beyond what is known solely from literature.  相似文献   

15.
The use of next‐generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.  相似文献   

16.
Frontiers of biomedical text mining: current progress   总被引:3,自引:0,他引:3  
It is now almost 15 years since the publication of the first paper on text mining in the genomics domain, and decades since the first paper on text mining in the medical domain. Enormous progress has been made in the areas of information retrieval, evaluation methodologies and resource construction. Some problems, such as abbreviation-handling, can essentially be considered solved problems, and others, such as identification of gene mentions in text, seem likely to be solved soon. However, a number of problems at the frontiers of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or 'BioNLP' in general, focusing primarily on papers published within the past year.  相似文献   

17.
Functional annotation is routinely performed for large-scale genomics projects and databases. Researchers working on more specific problems, for instance on an individual pathway or complex, also need to be able to quickly, completely and accurately annotate sequences. The Bioverse sequence annotation server (http://bioverse.compbio.washington.edu) provides a web-based interface to allow users to submit protein sequences to the Bioverse framework. Sequences are functionally and structurally annotated and potential contextual annotations are provided. Researchers can also submit candidate genomes for annotation of all proteins encoded by the genome (proteome).  相似文献   

18.
19.
The annotation of protein function at genomic scale is essential for day-to-day work in biology and for any systematic approach to the modeling of biological systems. Currently, functional annotation is essentially based on the expansion of the relatively small number of experimentally determined functions to large collections of proteins. The task of systematic annotation faces formidable practical problems related to the accuracy of the input experimental information, the reliability of current systems for transferring information between related sequences, and the reproducibility of the links between database information and the original experiments reported in publications. These technical difficulties merely lie on the surface of the deeper problem of the evolution of protein function in the context of protein sequences and structures. Given the mixture of technical and scientific challenges, it is not surprising that errors are introduced, and expanded, in database annotations. In this situation, a more realistic option is the development of a reliability index for database annotations, instead of depending exclusively on efforts to correct databases. Several groups have attempted to compare the database annotations of similar proteins, which constitutes the first steps toward the calibration of the relationship between sequence and annotation space.  相似文献   

20.
The Protein Information Resource (PIR) is an integrated public resource of protein informatics that supports genomic and proteomic research and scientific discovery. PIR maintains the Protein Sequence Database (PSD), an annotated protein database containing over 283 000 sequences covering the entire taxonomic range. Family classification is used for sensitive identification, consistent annotation, and detection of annotation errors. The superfamily curation defines signature domain architecture and categorizes memberships to improve automated classification. To increase the amount of experimental annotation, the PIR has developed a bibliography system for literature searching, mapping, and user submission, and has conducted retrospective attribution of citations for experimental features. PIR also maintains NREF, a non-redundant reference database, and iProClass, an integrated database of protein family, function, and structure information. PIR-NREF provides a timely and comprehensive collection of protein sequences, currently consisting of more than 1 000 000 entries from PIR-PSD, SWISS-PROT, TrEMBL, RefSeq, GenPept, and PDB. The PIR web site (http://pir.georgetown.edu) connects data analysis tools to underlying databases for information retrieval and knowledge discovery, with functionalities for interactive queries, combinations of sequence and text searches, and sorting and visual exploration of search results. The FTP site provides free download for PSD and NREF biweekly releases and auxiliary databases and files.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号