首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Sex chromosomes play a role in many important biological processes, including sex determination, genomic conflicts, imprinting, and speciation. In particular, they exhibit several unusual properties such as inheritance pattern, hemizygosity, and reduced recombination, which influence their response to evolutionary factors (e.g., drift, selection, and demography). Here, we examine the evolutionary forces driving X chromosome evolution in aphids, an XO system where females are homozygous (XX) and males are hemizygous (X0) at sex chromosomes. We show by simulations that the unusual mode of transmission of the X chromosome in aphids, coupled with cyclical parthenogenesis, results in similar effective population sizes and predicted levels of genetic diversity for X chromosomes and autosomes under neutral evolution. These results contrast with expectations from standard XX/XY or XX/X0 systems (where the effective population size of the X is three-fourths that of autosomes) and have deep consequences for aphid X chromosome evolution. We then localized 52 microsatellite markers on the X and 351 on autosomes. We genotyped 167 individuals with 356 of these loci and found similar levels of allelic richness on the X and on the autosomes, as predicted by our simulations. In contrast, we detected higher dN and dN/dS ratio for X-linked genes compared with autosomal genes, a pattern compatible with either positive or relaxed selection. Given that both types of chromosomes have similar effective population sizes and that the single copy of the X chromosome of male aphids exposes its recessive genes to selection, some degree of positive selection seems to best explain the higher rates of evolution of X-linked genes. Overall, this study highlights the particular relevance of aphids to study the evolutionary factors driving sex chromosomes and genome evolution.  相似文献   

2.
Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness.  相似文献   

3.
Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the ‘edges’ of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage‐specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage‐specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage‐specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters.  相似文献   

4.
Evolution of duplicate genes in a tetraploid animal, Xenopus laevis   总被引:6,自引:1,他引:5  
To understand the evolution of duplicate genes, we compared rates of nucleotide substitution between 17 pairs of nonallelic duplicated genes in the tetraploid frog Xenopus laevis with rates between the orthologous loci of human and rodent. For all duplicated X. laevis genes, the number of synonymous substitutions per site (dS) was greater than the number of nonsynonymous substitutions per site (dN), indicating that these genes are subject to purifying selection. There was also a significant positive correlation (r = 0.915) between dN for the X. laevis genes and dN for the mammalian genes, suggesting that, at the amino acid level, the X. laevis genes and the mammalian genes are under similar constraints. Results of relative-rate tests showed nearly equal rates of nonsynonymous substitution in each copy of the X. laevis genes; apparently there are similar constraints on both copies. No correlation was found between dS for the X. laevis genes and dS for the mammalian genes. There was a significant positive correlation both between members of pairs of duplicated X. laevis genes (r = 0.951) and between human and rodent orthologues (r = 0.854) with respect to third- position G+C content but no such relationship between the X. laevis genes and either of their mammalian orthologues. The results indicate that both copies of a duplicate gene can be subject to purifying selection and thus support the hypothesis of selection against all genotypes containing a null allele at either of two duplicate loci.   相似文献   

5.
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.  相似文献   

6.
7.
The patterns and processes of molecular evolution may differ between the X chromosome and the autosomes in Drosophila melanogaster. This may in part be due to differences in the effective population size between the two chromosome sets and in part to the hemizygosity of the X chromosome in Drosophila males. These and other factors may lead to differences both in the gene complements of the X and the autosomes and in the properties of the genes residing on those chromosomes. Here we show that codon bias and recombination rate are correlated strongly and negatively on the X chromosome, and that this correlation cannot be explained by indirect relationships with other known determinants of codon bias. This is in dramatic contrast to the weak positive correlation found on the autosomes. We explored possible explanations for these patterns, which required a comprehensive analysis of the relationships among multiple genetic properties such as protein length and expression level. This analysis highlights conserved features of coding sequence evolution on the X and the autosomes and illuminates interesting differences between these two chromosome sets.[Reviewing editor: Dr. Richard Kliman]  相似文献   

8.
The X chromosome is present as a single copy in the heterogametic sex, and this hemizygosity is expected to drive unusual patterns of evolution on the X relative to the autosomes. For example, the hemizgosity of the X may lead to a lower chromosomal effective population size compared to the autosomes, suggesting that the X might be more strongly affected by genetic drift. However, the X may also experience stronger positive selection than the autosomes, because recessive beneficial mutations will be more visible to selection on the X where they will spend less time being masked by the dominant, less beneficial allele—a proposal known as the faster-X hypothesis. Thus, empirical studies demonstrating increased genetic divergence on the X chromosome could be indicative of either adaptive or non-adaptive evolution. We measured gene expression in Drosophila species and in D. melanogaster inbred strains for both embryos and adults. In the embryos we found that expression divergence is on average more than 20% higher for genes on the X chromosome relative to the autosomes; but in contrast, in the inbred strains, gene expression variation is significantly lower on the X chromosome. Furthermore, expression divergence of genes on Muller''s D element is significantly greater along the branch leading to the obscura sub-group, in which this element segregates as a neo-X chromosome. In the adults, divergence is greatest on the X chromosome for males, but not for females, yet in both sexes inbred strains harbour the lowest level of gene expression variation on the X chromosome. We consider different explanations for our results and conclude that they are most consistent within the framework of the faster-X hypothesis.  相似文献   

9.
Tuco-tucos (Ctenomys) and related coruros (Spalacopus) are South American subterranean rodents. An energetically demanding lifestyle within the hypoxic, underground atmosphere may change the selective regime on oxidative phosphorylation. We examined whether weak and/or episodic positive directional selection affected the evolution of two mitochondrial genes (COX2, CytB), in a background of purifying selection in these lineages. We estimated rates of synonymous (dS) and non-synonymous (dN) substitutions and found: 1) significantly higher dN/dS ratio in subterranean groups relative to non-subterranean related species, and 2) two codons in each gene under episodic selection: 94 and 277 of COX2 and 269 and 307 of CytB.  相似文献   

10.
Alternative splicing (AS) is known to significantly affect exon-level protein evolutionary rates in mammals. Particularly, alternatively spliced exons (ASEs) have a higher nonsynonymous-to-synonymous substitution rate (dN/dS) ratio than constitutively spliced exons (CSEs), possibly because the former are required only occasionally for normal biological functions. Meanwhile, intrinsically disordered regions (IDRs), the protein regions lacking fixed 3D structures, are also reported to have an increased evolutionary rate due to lack of structural constraint. Interestingly, IDRs tend to be located in alternative protein regions. Yet which of these two factors is the major determinant of the increased dN/dS in mammalian ASEs remains unclear. By comparing human-macaque and human-mouse one-to-one orthologous genes, we demonstrate that AS and protein structural disorder have independent effects on mammalian exon evolution. We performed analyses of covariance to demonstrate that the slopes of the (dN/dS-percentage of IDR) regression lines differ significantly between CSEs and ASEs. In other words, the dN/dS ratios of both ASEs and CSEs increase with the proportion of IDR (PIDR), whereas ASEs have higher dN/dS ratios than CSEs when they have similar PIDRs. Since ASEs and IDRs may less frequently overlap with protein domains (which also affect dN/dS), we also examined the correlations between dN/dS ratio and exon type/PIDR by controlling for the density of protein domain. We found that the effects of exon type and PIDR on dN/dS are both independent of domain density. Our results imply that nature can select for different biological features with regard to ASEs and IDRs, even though the two biological features tend to be localized in the same protein regions.  相似文献   

11.
Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes. Indeed, the X chromosome in mouse is enriched for male-specific genes while they are depleted on the X in Drosophila but show neither of these trends in mosquito. Here, we will discuss recent findings on the ancestral and neo-X chromosomes in Drosophila that support sexual antagonism as a force shaping gene content evolution of sex chromosomes and suggest that selection could be driving male-biased genes off the X.  相似文献   

12.
Evolutionary pressures on proteins are often quantified by the ratio of substitution rates at non-synonymous and synonymous sites. The dN/dS ratio was originally developed for application to distantly diverged sequences, the differences among which represent substitutions that have fixed along independent lineages. Nevertheless, the dN/dS measure is often applied to sequences sampled from a single population, the differences among which represent segregating polymorphisms. Here, we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For population samples, the relationship between selection and dN/dS does not follow a monotonic function, and so it may be impossible to infer selection pressures from dN/dS. These results have significant implications for the interpretation of dN/dS measurements among population-genetic samples.  相似文献   

13.
The ratio of non-synonymous (dN) to synonymous (dS) changes between taxa is frequently computed to assay the strength and direction of selection. Here we note that for comparisons between closely related strains and/or species a second parameter needs to be considered, namely the time since divergence of the two sequences under scrutiny. We demonstrate that a simple time lag model provides a general, parsimonious explanation of the extensive variation in the dN/dS ratio seen when comparing closely related bacterial genomes. We explore this model through simulation and comparative genomics, and suggest a role for hitch-hiking in the accumulation of non-synonymous mutations. We also note taxon-specific differences in the change of dN/dS over time, which may indicate variation in selection, or in population genetics parameters such as population size or the rate of recombination. The effect of comparing intra-species polymorphism and inter-species substitution, and the problems associated with these concepts for asexual prokaryotes, are also discussed. We conclude that, because of the critical effect of time since divergence, inter-taxa comparisons are only possible by comparing trajectories of dN/dS over time and it is not valid to compare taxa on the basis of single time points.  相似文献   

14.
15.
16.
Wilson DJ  McVean G 《Genetics》2006,172(3):1411-1425
Models of molecular evolution that incorporate the ratio of nonsynonymous to synonymous polymorphism (dN/dS ratio) as a parameter can be used to identify sites that are under diversifying selection or functional constraint in a sample of gene sequences. However, when there has been recombination in the evolutionary history of the sequences, reconstructing a single phylogenetic tree is not appropriate, and inference based on a single tree can give misleading results. In the presence of high levels of recombination, the identification of sites experiencing diversifying selection can suffer from a false-positive rate as high as 90%. We present a model that uses a population genetics approximation to the coalescent with recombination and use reversible-jump MCMC to perform Bayesian inference on both the dN/dS ratio and the recombination rate, allowing each to vary along the sequence. We demonstrate that the method has the power to detect variation in the dN/dS ratio and the recombination rate and does not suffer from a high false-positive rate. We use the method to analyze the porB gene of Neisseria meningitidis and verify the inferences using prior sensitivity analysis and model criticism techniques.  相似文献   

17.
An excess of nonsynonymous substitutions over synonymous ones is an important indicator of positive selection at the molecular level. A lineage that underwent Darwinian selection may have a nonsynonymous/synonymous rate ratio (dN/dS) that is different from those of other lineages or greater than one. In this paper, several codon-based likelihood models that allow for variable dN/dS ratios among lineages were developed. They were then used to construct likelihood ratio tests to examine whether the dN/dS ratio is variable among evolutionary lineages, whether the ratio for a few lineages of interest is different from the background ratio for other lineages in the phylogeny, and whether the dN/dS ratio for the lineages of interest is greater than one. The tests were applied to the lysozyme genes of 24 primate species. The dN/dS ratios were found to differ significantly among lineages, indicating that the evolution of primate lysozymes is episodic, which is incompatible with the neutral theory. Maximum- likelihood estimates of parameters suggested that about nine nonsynonymous and zero synonymous nucleotide substitutions occurred in the lineage leading to hominoids, and the dN/dS ratio for that lineage is significantly greater than one. The corresponding estimates for the lineage ancestral to colobine monkeys were nine and one, and the dN/dS ratio for the lineage is not significantly greater than one, although it is significantly higher than the background ratio. The likelihood analysis thus confirmed most, but not all, conclusions Messier and Stewart reached using reconstructed ancestral sequences to estimate synonymous and nonsynonymous rates for different lineages.   相似文献   

18.
19.
Molecular Evolution of the Genomic RNA of Apple Stem Grooving Capillovirus   总被引:1,自引:0,他引:1  
The complete genome of the German isolate AC of Apple stem grooving virus (ASGV) was sequenced. It encodes two overlapping open reading frames (ORFs), similarly to previously described ASGV isolates. Two regions of high variability were detected between the ASGV isolates, variable region 1 (V1, from amino acids (aa) 532 to 570), and variable region 2 (V2, from aa 1,583 to 1,868). The phylogenetic analysis of the V1 and V2 regions suggested that the ASGV diversity was structured by host plant species rather than geographical origin. The dN/dS ratio between nonsynonymous and synonymous nucleotide substitution rates varied greatly along the ASGV genome. Most of ORF1 showed predominant negative selection except for the two regions V1 and V2. V1 showed an elevated dN and an average dS when compared to the ORF1 background but no significant positive selection was detected. The V2 region of ORF1 showed an elevated dN and a low dS when compared to the ORF1 background with an average dN/dS????3.0 indicative of positive selection. However, the V2 area includes overlapping ORFs, making the dN/dS estimate biased. Joint estimates of the selection intensity in the different ORFs by a recent method indicated that this region of ORF1 was in fact evolving close to neutrality. This was convergent with previous results showing that introduction of stop codons in this region of ORF1 did not impair plant infection. These data suggest that the elimination of a stop codon caused the overprinting of a novel coding region over the ancestral ORF.  相似文献   

20.
The signal for sex determination in the nematode Caenorhabditis elegans is the ratio between the number of X chromosomes and the number of sets of autosomes (the X/A ratio). Animals with an X/A ratio of 0.67 (a triploid with two X chromosomes) or less are males. Animals with an X/A ratio of 0.75 or more are hermaphrodites. Thus, diploid males have one X chromosome and diploid hermaphrodites have two X chromosomes. However, the difference in X-chromosome number between the sexes is not reflected in general levels of X-linked gene expression because of the phenomenon of dosage compensation. In dosage compensation, X-linked gene expression appears to be 'turned down' in 2X animals to the 1X level of expression. An intriguing and unexplained finding is that mutations and X-chromosome duplications that elevate X-linked gene expression also feminize triploid males. One way that this relationship between sex determination and X-linked gene expression may be operating is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号