首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP-deaminase (EC 3.5.4.6) is a key enzyme of nucleotide breakdown involved in regulation of adenine nucleotide pool in the liver. Mechanisms regulating activity of the enzyme are not completely elucidated, till now. In this paper experimental data indicating on the potential regulatory significance of changes in oligomeric structure of the enzyme are presented. SDS-PAG electrophoresis of human liver AMP-deaminase revealed the presence of three enzyme fragments. Only largest of them (the protein fragments weighing 68 kDa) reacted immunologically with monoclonal anti- (human liver) AMP-deaminase antibodies. At physiological pH 7.0, in the absence of regulatory ligands, reaction catalysed by human liver AMP-deaminase was strongly dependent on enzyme concentration used, with half-saturation constant (S0.5) values increasing significantly with the degree of enzyme dilution. Preincubation with activated long-chain fatty acids – substances promoting dissociation of oligomeric enzymes, inhibited the activity of AMP-deaminase studied nearly completely. Gel filtration on Sepharose CL-6B column demonstrated existence of at least three active oligomeric forms of human liver AMP-deaminase. We postulate that oligomeric structure of the enzyme is a factor determining regulatory profile of AMP-deaminase studied.  相似文献   

2.
AMP-deaminase from human term placenta was chromatographed on a phosphocellulose column and physico-chemical and immunological properties of the purified enzyme were investigated. At physiological pH7.0, in the absence of regulatory ligands (control conditions) studied AMP-deaminase manifested sigmoid-shaped substrate saturation kinetics, with half-saturation parameter (S0.5) value of about 7 mM. Addition of important allosteric effectors (ATP, ADP or orthophosphate) modified kinetic properties of studied AMP-deaminase, influencing mainly the value of S0.5 parameter. Micromolar concentrations of stearylo-CoA inhibited potently the enzyme making it no longer sensitive towards 1 mM ATP-induced activation. SDS-PAGE electrophoresis of the purified enzyme revealed presence of 68 kDa protein fragment, reacting with anti-(human) liver AMP-deaminase antibodies. Experimental results presented indicate that liver type of AMP-deaminase is an enzyme form present in human term placenta.  相似文献   

3.
The variations of kinetic parameters with pH of the activity of 14-day-old chicken embryo and adult hen skeletal muscle AMP-deaminase in the presence and in the absence of adenine nucleotide effectors have been examined. The results obtained indicate that the kinetic and regulatory properties of the two developmental forms of AMP-deaminase are different.  相似文献   

4.
AMP-deaminase from hen stomach smooth muscle was isolated and physico-chemical properties of the purified enzyme were investigated. The enzyme had an activity optimum at pH 6.5, and poorly deaminated the substrate analogues tested. At optimum pH (6.5), in the absence of regulatory ligands (control conditions), the enzyme manifested hyperbolic substrate-saturation kinetics with half-saturation constant (S(0.5)) of about 4.5 mM. Additions of adenine nucleotide effectors (ATP, ADP) activated the enzyme strongly at all the concentrations tested, diminishing significantly the value of S(0.5) constant. In contrast, the regulatory effect of orthophosphate was variable, and depended on the orthophosphate concentration used. The molecular mass of the enzyme subunit determined in SDS/PAG electrophoresis was about of 37kDa. The obtained results suggest that in different types of hen muscle, similarly as in humans and rats, expression of AMP-deaminase is under the control of independent genes.  相似文献   

5.
AMP-deaminase from human kidney (cortex and medulla) was purified and the physicochemical properties were characterized. The enzyme from both portions of the kidney exhibited identical kinetics and regulatory properties. At optimal pH (6.6), the AMP-deaminase studied exhibited a distinctly sigmoidal substrate saturation kinetics, with the half-saturation parameter (S0.5) as high as 10 mM. ATP at 1 mM strongly activated the enzyme, decreasing S0.5 nearly 10-fold. The activating effect of ADP was less strong. Orthophosphate inhibited the enzyme, but the inhibition observed was weak (Ki approximately 16 mM) and had a pure competitive character. At pH 7.2, physiological for the kidney cortex, orthophosphate inhibition became even weaker and became partially competitive. Variations in the adenylate energy charge had potent effects on the activity of AMP-deaminase, depending on the size of the total adenine nucleotide pool examined. The results of gel filtration and SDS-PAGE indicated that human kidney AMP-deaminase is an oligomeric enzyme composed of four, probably identical, subunits weighing about 37 kDa each.  相似文献   

6.
Background AMP-deaminase (EC 3.5.4.6) is an enzyme of nucleotide breakdown involved in regulation of energetic metabolism in mammalian cells. The enzyme is coded by a family of three independent genes (AMPD1, AMPD2 and AMPD3), synthesizing three different isozymes. In mammalian liver, the reaction catalyzed by AMP-deaminase constitutes a rate-limiting step in adenine nucleotide catabolism. In neoplastic liver, adenine nucleotide catabolism is a subject of many modifications, which influence the expression of genes synthesizing enzymes regulating this pathway. Aims The experimental studies presented here illustrate the expression of AMPD genes in human liver neoplasm tumor (HCC, hepatocellular carcinoma). Methods RT-PCR and Western blotting methods were used for determining of the goal mentioned above. Results and conclusion Expression level of AMPD gene family in the tumorous fragment (HCC tumor) of neoplastic liver did not differ substantially from that found in the nontumorous (cirrhotic) fragment of the organ. In this case the expression of AMPD2 gene was prevailing. AMPD2 was the main isoform of AMP-deaminase identified in two liver fragments compared. This is a first report evidencing the pattern of AMPD genes expression in neoplastic human liver.  相似文献   

7.
At pH 7.0 and physiological concentrations of the main regulatory ligands (ATP, ADP, orthophosphate), human uterine muscle AMP-deaminase follows a hyperbolic type of saturation kinetics with S0.5 parameter value about 2 mM. The enzyme is regulated by adenylate energy charge (AEC) variations, being the most active at the AEC value 0.5-0.6 or 0.5-0.7, depending on the size of the total adenine nucleotide pool. Long-chain acyl-CoA strongly inhibit activity of the enzyme, influencing mainly the maximum velocity of the reaction.  相似文献   

8.
Interpretation of the kinetic data in terms of concerted transition theory indicated that in the presence of 100 mM potassium chloride hen heart AMP-deaminase may be active as a dimer. The presence of ATP, but not of the ADP in the incubation medium shifts completely the allosteric equilibrium towards the active, accessible to the substrate form of the enzyme. In the joint presence of main enzyme effectors (ATP, ADP and orthophosphate) added to the incubation medium at physiological concentrations, the plot of the reaction rate versus substrate concentration manifested hyperbolic dependence and the value of half-saturation constant (K0.5) did not differ from the value of this parameter obtained for ATP(alone)-activated enzyme.  相似文献   

9.
1. Kinetic data for avian erythrocyte AMP-deaminase in lysate supernatants and 2000-fold purified enzyme were consistent with an allosteric model having four binding sites for substrate. 2. Relative to the purified enzyme, AMP-deaminase in lysate supernatants exhibited a greater S0.5 and enhanced sensitivity toward phytic acid, but was far less sensitive toward potassium ion. 3. In the absence of potassium chloride, the enzymatic activity in lysates exhibited hysteresis at subsaturating 5'-AMP. This response was modified reversibly by allosteric ligands. 4. It is concluded that the characteristics of avian RBC AMP-deaminase, as expressed in lysates, may reflect important intermolecular interactions and better represent the regulatory properties of this enzyme in erythrocytes.  相似文献   

10.
AMP-deaminase from human uterine smooth muscle has been isolated, and properties of the enzyme were characterized. At pH 7.0, and in the presence of 100 mM potassium chloride the enzyme manifests a distinctly sigmoidal type of kinetics, with S0.5 parameter value about 12 mM. 1 mM ATP strongly activates the enzyme, and diminishes the value of S0.5 to 1.2 mM. In contrast to that 2.5 mM orthophosphate slightly inhibits the activity of AMP-deaminase studied and increases the S0.5 to about 14 mM. Similarly to ATP, orthophosphate does not influence the maximum velocity of the reaction. Electrophoresis in the presence of sodium dodecyl sulphate revealed that the molecular weight of human smooth muscle AMP-deaminase subunit is close to 37 kDa.  相似文献   

11.
Most investigations of the allosteric properties of the regulatory enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli are based on the sigmoidal dependence of enzyme activity on substrate concentration and the effects of the inhibitor, CTP, and the activator, ATP, on the saturation curves. Interpretations of these effects in terms of molecular models are complicated by the inability to distinguish between changes in substrate binding and catalytic turnover accompanying the allosteric transition. In an effort to eliminate this ambiguity, the binding of the 3H-labeled bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) to aspartate transcarbamoylase in the absence and presence of the allosteric effectors ATP and CTP has been measured directly by equilibrium dialysis at pH 7 in phosphate buffer. PALA binds with marked cooperativity to the holoenzyme with an average dissociation constant of 110 nM. ATP and CTP alter both the average affinity of ATCase for PALA and the degree of cooperativity in the binding process in a manner analogous to their effects on the kinetic properties of the enzyme; the average dissociation constant of PALA decreases to 65 nM in the presence of ATP and increases to 266 nM in the presence of CTP while the Hill coefficient, which is 1.95 in the absence of effectors, becomes 1.35 and 2.27 in the presence of ATP and CTP, respectively. The isolated catalytic subunit of ATCase, which lacks the cooperative kinetic properties of the holoenzyme, exhibits only a very slight degree of cooperativity in binding PALA. The dissociation constant of PALA from the catalytic subunit is 95 nM. Interpretation of these results in terms of a thermodynamic scheme linking PALA binding to the assembly of ATCase from catalytic and regulatory subunits demonstrates that saturation of the enzyme with PALA shifts the equilibrium between holoenzyme and subunits slightly toward dissociation. Ligation of the regulatory subunits by either of the allosteric effectors leads to a change in the effect of PALA on the association-dissociation equilibrium.  相似文献   

12.
It is shown that the AMP-deaminase activity in leucocytes of the human peripheric blood in contrast with the enzyme from erythrocytes manifests its activity only if it is isolated in the presence of K+ or Na+ ions. Pi and GTP being inhibitors of the enzyme in different tissues including erythrocytes do not alter the AMP-deaminase activity in leucocytes. 3,3',5-triiodothyracetic acid markedly decreasing the AMP-deaminase activity of leucocytes does not affect the enzyme activity in the hemolyzate of erythrocytes. The results obtained have shown that the AMP-deaminase activity in leucocytes of the human peripheric blood possesses some regulatory properties differing from those of the enzyme in erythrocytes.  相似文献   

13.
We decribed the preparation of adenine 1-oxide nucleotides by oxidation of the natural compounds with monopermaleic acid in aqueous solutions at neutral pH, with an overall yield after chromatographic purification between 75 and 80%. If irradiated, the adenine 1-oxide nucleotides undergo a photochemical rearrangement reaction, the main photoproducts in aqueous solution at alkaline pH being the corresponding isoguanine nucleotides. The modified ring vibration pattern of the 1-oxide analogues as well as the 13C chemical shift indicate a loss of aromaticity as compared to the natural compounds. Coupling constant measurements show that the dihedral angle between the 31POC and OC13C planes is around 180degree, i.e., trans, as in the natural adenine nucleotides. The modified adenine nucleotides were tested as potential substrates and/or inhibitors of mitochondrial processes, as substrates of varous phosphotransferases from mitochondria or cytosol, and as allosteric effectors in the reactions catalyzed by glutamate dehydrogenase and phosphofructokinase. Although the adenine 1-oxide nucleotides are not recognized by the translocase system of the inner mitochondrial membrane, they are good substrates for mitochondrial phosphotransferases located in the intermembrane space. Similarly, they participate in the phosphoryl group transfer reactions catalyzed by pyruvate kinase, phosphofructokinase, and hexokinase. As allosteric effectors, the modified nucleotides are less active than the natural compounds, probably because of a lower binding capacity to the allosteric sites of the regulatory enzymes.  相似文献   

14.
1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme.  相似文献   

15.
AMP-deaminase from human liver was purified by two-step phosphocellulose chromatography, and SDS-PAG electrophoresis of the most active enzyme fraction eluted has been performed. The largest of the protein fragments revealed had a size (92 kDa) of an apparent full-size enzyme subunit, and reacted positively with antibodies produced against specific human ampd2 gene product. Three-day storage at cold room temperature modified significantly the electrophoretical pattern of the enzyme, evidencing continuous and progressive degradation of its structure. This is a first report evidencing the presence of apparent full-size form of human liver AMP-deaminase in preparation obtained from endogenous source.  相似文献   

16.
The kinetic and molecular properties of a phosphofructokinase derived from a transplantable rat thyroid tumor lacking regulatory control on the glycolytic pathway were studied. The properties of the near-purified enzyme (specific activity 140 units/mg) were compared with those of phosphofructokinase from normal rat thyroid (specific activity 134 units/mg). The electrophoretic mobilities and gel elution behavior of these two enzymes were almost similar. The thyroid tumor phosphofructokinase showed, however, a greater degree of size and/or shape heterogeneity in the presence of ATP than the normal thyroid enzyme, as determined by gel filtration and sucrose density gradient centrifugation. Kinetic studies below pH 7.4 showed a sigmoid response curve for both enzymes when the velocity was determined at 1 mM ATP with varying levels of fructose-6-P. The interaction coefficient, however, was 4.2 and 2.6 for normal and tumor thyroid phosphofructokinase, respectively. Ammonium sulfate decreased the cooperative interactions with the substrate fructose-6-P in both enzymes. The thyroid tumor enzyme, however, was less sensitive to the inhibition by ATP and by citrate. The reversal of citrate inhibition by cyclic 3':5'-adenosine monophosphate was also less effective with the thyroid tumor phosphofructokinase, while the protective effect of fructose-6-P was stronger. The difference in citrate inhibition between tumor and normal thyroid enzyme was not strongly affected by varying the MgCl2 concentration up to 10 mM. It is concluded that the complex allosteric regulation typical of the normal thyroid phosphofructokinase is still present in the enzyme isolated from the thyroid tumor tissue. The latter, however, is more loosely controlled by its physiological effectors, such as ATP, citrate, and cyclic AMP.  相似文献   

17.
Li Y  Rivera D  Ru W  Gunasekera D  Kemp RG 《Biochemistry》1999,38(49):16407-16412
Earlier studies indicated an evolutionary relationship between bacterial and mammalian phosphofructo-1-kinases (PFKs) that suggests duplication, tandem fusion, and divergence of catalytic and effector binding sites of a prokaryotic ancestor to yield in eukaryotes a total of six organic ligand binding sites. The identities of residues involved in the four binding sites for allosteric ligands in mammalian PFK have been inferred from this assumed relationship. In the current study of the C isozyme of rabbit PFK, two arginine residues that can be aligned with important residues in the catalytic and allosteric binding sites of bacterial PFK and that are conserved in all eukaryotic PFKs were mutated. Arg-48 was suggested previously to be part of either the ATP inhibitory or the adenine nucleotide activating site. However, the mutant enzyme showed only slightly less sensitivity to ATP inhibition and was fully activatable by adenine nucleotides. On the other hand, sensitivity to citrate and 3-phosphoglycerate inhibition was lost, indicating an important role for Arg-48 in the binding of these allosteric effectors. Mutation of Arg-481, homologous to an active site residue in bacterial PFK, prevented binding and allosteric activation by fructose 2,6-bisphosphate. A new relationship between the allosteric sites of mammalian PFK and bacterial PFK is proposed.  相似文献   

18.
Phosphofructokinase was immobilized within a protein membrane or on soluble protein polymers using glutaraldehyde as cross-linking reagent. The native enzyme was also modified chemically, using the cross-linking reagent alone. A comparative kinetic investigation of these preparations was carried out. The catalytic activity of the chemically modified enzyme and its affinity towards fructose 6-phosphate decreased significantly; the modified enzyme lost its cooperative properties and the allosteric regulation by AMP was affected. When the chemical treatment was performed in the presence of effectors (AMP or ATP) the allosteric transition induced by AMP was restored, suggesting that the cross-linking reagent modified the AMP regulatory sites, albeit no higher-substrate-affinity enzyme conformation was frozen. Molecular data showed that glutaraldehyde produced intramolecular then intermolecular bonds as its concentration increased. When the enzyme was immobilized into protein membranes or on soluble polymers, the enzyme behavior was quite similar: decrease of affinity towards fructose 6-phosphate but no changes in cooperative properties and modifications of allosteric transition induced by AMP. When AMP was present during the immobilisation process, the enzyme immobilized in this way was no longer sensitive to effectors, either AMP or ATP. It showed Michaelian behavior and higher substrate affinity quite similar to that of the native enzyme. The data suggested that a higher-substrate-affinity enzymatic form was most probably stabilized by immobilization.  相似文献   

19.
In the present paper physico-chemical properties of AMP-deaminase purified from human liver neoplasm-hepatocellular carcinoma (HCC) were investigated and compared with these obtained for the enzyme from normal, unaffected tissue.  相似文献   

20.
A reactive ATP analog, N6-(6-bromoacetamidohexyl)-AMP.PCP, was synthesized in an attempt to covalently label the binding sites for adenine nucleotides, especially ATP, of various enzymes which utilize adenine nucleotides as substrates, cofactors, inhibitors or allosteric effectors. This reagent rapidly inactivated rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GPD), myokinase (MK), and creatine kinase (CK) under very mild conditions. Adenine nucleotide substrates prevented the inactivation. In the case of GPD, complete inactivation was observed when 1 mol of the reagent per mol of enzyme subunit was incorporated into the enzyme. These results indicate that the present ATP analog may be useful as an affinity labeling reagent for various adenine nucleotide-dependent enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号