首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  Semiochemical interactions between the spruce bark beetle Ips typographus , its predators Medetera setiventris , Thanasimus formicarius and Thanasimus femoralis , and the host Norway spruce, Picea abies , were studied in the field. The chemicals S - cis -verbenol, 2-methyl-3-buten-2-ol, ipsdienol, (+)- α -pinene, (−)- α -pinene, (±)- α -pinene, limonene, camphor and their naturally occuring mixtures were used as trap baits in a multiple-choice design that allowed for comparison of their attractivity for the focal species. Medetera was attracted to both the prey aggregation pheromone and its multifunctional component, ipsdienol. On the contrary, both Thanasimus species responded predominantly to ipsdienol and less to the prey aggregation pheromone. In the case of I. typographus , the attractivity of aggregation pheromone seems to be increased by the addition of a mixture of monoterpenic tree volatiles, and by addition of ipsdienol. Bark beetles and predators showed species-specific responses to volatile mixtures representing different stages of tree decay and different stages of bark beetle colony establishment. These responses correlates with the optimal foraging habitat of each species. None of the predator species responded to 2-methyl-3-buten-2-ol, a substantial component of I. typographus pheromonal bouquet, thus it is hypothesized that only substances of monoterpenic origin attract predators.  相似文献   

2.
Plants can form an immunological memory known as defense priming, whereby exposure to a priming stimulus enables quicker or stronger response to subsequent attack by pests and pathogens. Such priming of inducible defenses provides increased protection and reduces allocation costs of defense. Defense priming has been widely studied for short-lived model plants such as Arabidopsis, but little is known about this phenomenon in long-lived plants like spruce. We compared the effects of pretreatment with sublethal fungal inoculations or application of the phytohormone methyl jasmonate (MeJA) on the resistance of 48-year-old Norway spruce (Picea abies) trees to mass attack by a tree-killing bark beetle beginning 35 days later. Bark beetles heavily infested and killed untreated trees but largely avoided fungus-inoculated trees and MeJA-treated trees. Quantification of defensive terpenes at the time of bark beetle attack showed fungal inoculation induced 91-fold higher terpene concentrations compared with untreated trees, whereas application of MeJA did not significantly increase terpenes. These results indicate that resistance in fungus-inoculated trees is a result of direct induction of defenses, whereas resistance in MeJA-treated trees is due to defense priming. This work extends our knowledge of defense priming from model plants to an ecologically important tree species.  相似文献   

3.
4.
Analyses of volatiles in hindguts of Ips typgraphus males from different spruce trees and attack phases are reviewed. The composition of monoterpenes, and the chirality of α-pinene, have been determined in phloem samples. Relationships between compounds emanating from spruce trees and bark beetles, respectively, have been studied. Male beetles depend on their host tree for the production of pinene alcohols. The ratio between the pinene alcohols is almost constant in males boring in the same tree but can vary widely between males from different spruce trees. Very good correlations were found between some host tree monoterpene hydrocarbons and bark beetle produced pinene alcohols. The production of the essential pheromone component 2-methyl-3-buten-2-ol, was not correlated with the monoterpene content in the host trees, while the production of the other essential pheromone component, cis-verbenol, depends on the amount of the precursor, (−)-α-pinene in the phloem. Male beetles boring in a resistant spruce tree will continue to produce the pinene alcohols, including cis -verbenol, as long as the tree defends itself with resin.  相似文献   

5.
Secondary attraction to aggregation pheromones plays a central role in the host colonization behavior of the European spruce bark beetle Ips typographus. However, it is largely unknown how the beetles pioneering an attack locate suitable host trees, and eventually accept or reject them. To find possible biomarkers for host choice by I. typographus, we analyzed the chemistry of 58 Norway spruce (Picea abies) trees that were subsequently either (1) successfully attacked and killed, (2) unsuccessfully attacked, or (3) left unattacked. The trees were sampled before the main beetle flight in a natural Norway spruce-dominated forest. No pheromones were used to attract beetles to the experimental trees. To test the trees' defense potential, each tree was treated in a local area with the defense hormone methyl jasmonate (MeJ), and treated and untreated bark were analyzed for 66 different compounds, including terpenes, phenolics and alkaloids. The chemistry of MeJ-treated bark correlated strongly with the success of I. typographus attack, revealing major chemical differences between killed trees and unsuccessfully attacked trees. Surviving trees produced significantly higher amounts of most of the 39 analyzed mono-, sesqui-, and diterpenes and of 4 of 20 phenolics. Alkaloids showed no clear pattern. Differences in untreated bark were less pronounced, where only 1,8-cineole and (-)-limonene were significantly higher in unsuccessfully attacked trees. Our results show that the potential of individual P. abies trees for inducing defense compounds upon I. typographus attack may partly determine tree resistance to this bark beetle by inhibiting its mass attack.  相似文献   

6.
The bark beetle Ips typographus carries numerous fungi that could be assisting the beetle in colonizing live Norway spruce (Picea abies) trees. Phenolic defenses in spruce phloem are degraded by the beetle's major tree-killing fungus Endoconidiophora polonica, but it is unknown if other beetle associates can also catabolize these compounds. We compared the ability of five fungi commonly associated with I. typographus to degrade phenolic compounds in Norway spruce phloem. Grosmannia penicillata and Grosmannia europhioides were able to degrade stilbenes and flavonoids faster than E. polonica and grow on minimal growth medium with spruce bark constituents as the only nutrients. Furthermore, beetles avoided medium amended with phenolics but marginally preferred medium colonized by fungi. Taken together our results show that different bark beetle-associated fungi have complementary roles in degrading host metabolites and thus might improve this insect's persistence in well defended host tissues.  相似文献   

7.

Background

Tree-killing bark beetles (Coleoptera, Scolytinae) are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization.

Methods

To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L.) we inoculated 20 mature Norway spruce Picea abies (L.) Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem.) C. Moreau, and investigated induced terpene levels and beetle colonization in the bark.

Results

Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7) had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m−2) and 2.6% as much gallery length (0.029 m m−2 vs. 1.11 m m−2) as trees with low terpene levels (n = 6). There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g−1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g−1 dry phloem trees were virtually unattacked.

Conclusion/Significance

This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.  相似文献   

8.
Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.  相似文献   

9.
10.
云杉八齿小蠹是欧洲最具危害性的小蠹虫之一,嗜食衰弱木,利用雄性产生的信息素进行大面积聚集。聚集信息素不仅具有引诱聚集的作用,其种类和数量还具有调节其聚集密度的效应。在定殖过程中,云杉八齿小蠹既能利用寄主挥发物定位寄主,也能利用非寄主挥发物作为远距离的嗅觉示踪来区别寄主和非寄主。在森林生态系统内捕食性天敌和寄生性天敌很大程度上影响着云杉八齿小蠹的种群密度和行为生态。本文从云杉八齿小蠹的分布与扩散、天敌的种类及控制作用、化学信息物质对小蠹虫及其天敌的行为调控作用以及信息素防治现状等方面进行了综述,并展望了其研究前景。  相似文献   

11.
Temperatures in the forest litter of Norway spruce Picea abies were recorded throughout the day to obtain environmental parameters that could be used to design realistic flight-activity experiments in the laboratory. Flight activity and survival were monitored electronically in plastic chambers where the conditions were controlled by an environmental chamber. Flight attempts of the bark beetle Ips typographus were initially lower in chambers with forest duff but were prolonged compared with those of beetles in chambers with a metal screen substrate. Small bark slabs and spruce twigs in the duff were utilized as food and extended the period of flight and survival. A thermal gradient in duff from 25° at the surface down to 13.8°C at a depth of 4 cm also slightly increased the survival of beetles compared with a constant 25°. A daily ambient temperature cycle as well as the duff thermal gradient increased the survival from about 3 d to more than 8 d. The latter length in the laboratory agreed with survival rates of caged beetles in a clearcut forest area, while beetles caged in the forest survival for more than 14 d. Temperatures were monitored at the duff surface of the caged beetles and compared with the catches of beetles that were attracted to a pheromone trap and collected with an electronic fraction collector. Information on flight and survival during the dispersal period is necessary to the design of ecologically sound management programs for control of bark beetles.  相似文献   

12.
Pine-feeding bark beetles (Coleoptera: Scolytidae) interact chemically with their host pines (Coniferales: Pinaceae) via the behavioral, physiological, and biochemical effects of one class of isoprenoids, the monoterpenes and their derivatives. Pine monoterpenes occur in the oleoresin and function as behaviorally active kairomones for pine bark beetles and their predators, presenting a classic example of tri-trophic chemical communication. The monoterpenes are also essential co-attractants for pine bark beetle aggregation pheromones. Ironically, pine monoterpenes are also toxic physiologically to bark beetles at high vapor concentrations and are considered an important component of the defense of pines. Research over the last 30 years has demonstrated that some bark beetle aggregation pheromones arise through oxygenation of monoterpenes, linking pheromone biosynthesis to the host pines. Over the last 10 years, however, several frequently occurring oxygenated monoterpene pheromone components (e.g., ipsenol, ipsdienol and frontalin) have also been shown to arise through highly regulated de novo pathways in the beetles (reviewed in Seybold and Tittiger, 2003). The most interesting nexus between these insects and their plant hosts involves the late-stage reactions in the monoterpenoid biosynthetic pathway, during which isomeric dimethylallyl diphosphate and isopentenyl diphosphate are ultimately elaborated to stereospecific monoterpenes in the trees and to hydroxylated monoterpenes or bicyclic acetals in the insects. There is signal stereospecificity in both production of and response to the monoterpenoid aggregation pheromones of bark beetles and in response to␣the monoterpenes of the pines. In the California fivespined ips, Ips paraconfusus, we have discovered a number of cytochome P450 genes that have expression patterns indicating that they may be involved in detoxifying monoterpene secondary metabolites and/or biosynthesizing pheromone components. Both processes result in the production of oxygenated monoterpenes, likely with varying degrees of stereospecificity. A behavioral analysis of the stereospecific response of I. paraconfusus to its pheromone is providing new insights into the development of an efficacious bait for the detection of this polyphagous insect in areas outside the western United States. In contrast, a Eurasian species that has arrived in California, the Mediterranean pine engraver, Orthotomicus (Ips) erosus, utilizes both a monoterpenoid (ipsdienol) and a hemiterpenoid (2-methyl-3-buten-2-ol) in its pheromone blend. The stereospecificity of the response of O. erosus to the monoterpenoid appears to be the key factor to the improved potency of the attractant bait for this invasive species.Dedicated to Professor David L. Wood on the occasion of his 75th birthday, January 8, 2006  相似文献   

13.
In conifers, attacks by bark beetles and associated pathogenic fungi cause an induced wound response, which is characterized by accumulation of antifungal compounds and morphological changes that aid wound healing. In this article the stilbene and terpene concentrations of Norway spruce phloem were monitored as symptoms of induced wound responses in relation to changed nutrient conditions caused by fertilization. Plots of mature Norway spruce were fertilized with N, P or NPK. One year after fertilization the trees were artificially infected with Ceratocystis polonica, a pathogenic fungus associated with the bark beetle Ips typographus. The response of stilbenes to fungal inoculation was mainly qualitative. The concentration of stilbene glycosides in the phloem decreased, and in the immediate vicinity of the site of fungal inoculation, stilbene glycosides were less frequent than in mechanically wounded or unwounded phloem. Corresponding stilbene aglycones were most frequent inside the reaction lesion. The concentration of total stilbene aglycones near the inoculation site was significantly lower in N-fertilized trees than in unfertilized trees. Fungal inoculation caused a strong quantitative response in terpenes. The total terpene concentration of the phloem increased significantly, to almost 100 times greater near the inoculation site compared to the constitutive values. N fertilization significantly reduced the total terpene and total stilbene aglycone concentrations near the inoculation sites. Thus, N fertilization may reduce the ability of Norway spruce to defend itself against fungal pathogens.  相似文献   

14.
Bark beetles and associated fungi are among the greatest natural threats to conifers worldwide. Conifers have potent defenses, but resistance to beetles and fungal pathogens may be reduced if tree stored resources are consumed by fungi rather than used for tree defense. Here, we assessed the relationship between tree stored resources and resistance to Ceratocystis polonica, a phytopathogenic fungus vectored by the spruce bark beetle Ips typographus. We measured phloem and sapwood nitrogen, non-structural carbohydrates (NSC), and lipids before and after trees were attacked by I. typographus (vectoring C. polonica) or artificially inoculated with C. polonica alone. Tree resistance was assessed by measuring phloem lesions and the proportion of necrotic phloem around the tree''s circumference following attack or inoculation. While initial resource concentrations were unrelated to tree resistance to C. polonica, over time, phloem NSC and sapwood lipids declined in the trees inoculated with C. polonica. Greater resource declines correlated with less resistant trees (trees with larger lesions or more necrotic phloem), suggesting that resource depletion may be caused by fungal consumption rather than tree resistance. Ips typographus may then benefit indirectly from reduced tree defenses caused by fungal resource uptake. Our research on tree stored resources represents a novel way of understanding bark beetle-fungal-conifer interactions.  相似文献   

15.
The spruce bark beetle Ips typographus is one of the major insect pests of mature Norway spruce forests. In this study, a model describing the temperature-dependent thresholds for swarming activity and temperature requirement for development from egg to adult was driven by transient regional climate scenario data for Sweden, covering the period of 1961–2100 for three future climate change scenarios (SRES A2, A1B and B2). During the 20th century, the weather supported the production of one bark beetle generation per year, except in the north-western mountainous parts of Sweden where the climate conditions were too harsh. A warmer climate may sustain a viable population also in the mountainous part; however, the distributional range of I. typographus may be restricted by the migration speed of Norway spruce. Modelling suggests that an earlier timing of spring swarming and fulfilled development of the first generation will significantly increase the frequency of summer swarming. Model calculations suggest that the spruce bark beetle will be able to initiate a second generation in South Sweden during 50% of the years around the mid century. By the end of the century, when temperatures during the bark beetle activity period are projected to have increased by 2.4–3.8 °C, a second generation will be initiated in South Sweden in 63–81% of the years. The corresponding figures are 16–33% for Mid Sweden, and 1–6% for North Sweden. During the next decades, one to two generations per year are predicted in response to temperature, and the northern distribution limit for the second generation will vary. Our study addresses questions applicable to sustainable forest management, suggesting that adequate countermeasures require monitoring of regional differences in timing of swarming and development of I. typographus , and planning of control operations during summer periods with large populations of bark beetles.  相似文献   

16.
A model of attack dynamics on a single tree under mass attack by the spruce bark beetle Ips typographus is developed from earlier studies of pheromone production and response of the flying population to the pheromone signal. The model is explored for different numbers and sex-ratios of pioneer beetles and responding beetles. Both numbers of pioneers and responders were important for the dynamics, while the sex-ratio of pioneers was less important. A decreased proportion of males among the responding beetles was important for the result of the model. In the early stage of the attack the model predictions of both numbers and sex-ratio of beetles landing were similar to examples from naturally mass-attacked trees, although the attack proceeded more slowly than in the field. Several aspects of the attack dynamics, such as density-regulation of the number of attacks on the tree, as observed in the field, were not predicted by the model. Gaps in the knowledge of the chemical ecology of the tree-insect relation, such as qualitative change in odours from the tree, spacing mechanisms on the bark surface, and mortality due to host resistence, are pointed out with help of the model.  相似文献   

17.
Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.  相似文献   

18.
Abstract:  Tree-killing ability of Pityogenes chalcographus was experimentally investigated by baiting living spruce Picea abies with synthetic aggregation pheromone, thereby exposing them to beetle attack. Reproductive success was estimated by rearing beetles from stem sections taken from killed trees. The presence of Ips typographus on several killed trees allowed a comparison of reproductive success in the presence and absence of this species. Furthermore, the possibility that breeding material colonized by P. chalcographus may induce subsequent attacks by I. typographus on nearby trees was also studied. The tree killing ability of P. chalcographus was low as only 8% of the baited trees, attacked by P. chalcographus alone, were killed. Tree death was strongly related to the presence of I. typographus , which is in line with the association with aggressive wood-living fungi in this species. The reproductive success was low, with on average less than one daughter beetle produced per mother beetle. The success was significantly higher in trees also inhabited by I. typographus . Tree-parts colonized by P. chalcographus induced almost no attacks by I. typographus on nearby trees.  相似文献   

19.
The anatomical response of Norway spruce bark polyphenolic parenchyma cells (PP cells) to inoculation with the phytopathogenic fungus Ceratocystis polonica and attack by its bark-beetle vector Ips typographus was examined. Fungal inoculation on the periderm surface had no effect, while inoculation just below the periderm or halfway into the phloem (mid-phloem) generated detectable responses within 3 wk. The responses included increase in PP cell size and in periodic acid-Schiff's staining of PP cell phenolics, wound periderm initiation from PP cells, and cambial zone traumatic resin duct formation. Fungi were not seen in samples 3 wk after subperiderm or mid-phloem inoculation, but were found in some samples 6 and 9 wk after mid-phloem inoculation. In contrast, inoculations into the cambium resulted in partial (3 wk) or complete (6 and 9 wk) fungal colonization and death of tissue in the infected area. This indicates that PP cells have defenses capable of inhibiting fungal growth. Samples taken near bark-beetle galleries had similar anatomical responses as inoculated samples, validating the inoculation approach to studying defense responses in spruce. These results show that PP cells represent not only a constitutive defense system, but are also involved in local and remote inducible defenses against fungal and beetle attack.  相似文献   

20.
ABSTRACT. Field tests showed ( S )-(-)- cis -verbenol and ( R )-(+)- trans -verbenol in combination with a second pheromonal component, 2-methyl-3-buten-2-ol, more attractive than the combination with their optical antipodes. Inhibition of response to the attractant component, ( S )-(-)- cis -verbenol, by high concentrations of its optical antipode did not occur. No significant differences were noted for response to the attractant, ( S )-(-)- cis -verbenol and 2-methyl-3-buten-2-ol, with the addition of either ipsdienol enantiomer or a racemic mixture of ipsdienol enantiomers. Electroantennogram (EAG) studies correlated well with the behavioural studies. EAGs recorded from male and female beetles revealed both sexes to have a lower threshold for the pheromone, ( S )-(-)- cis -verbenol, than its host terpene precursor, (-)- alpha -pinene. EAGs showed a greater number of acceptors for (-)- alpha-pinene in males than in females. EAGs at acceptor saturation to the enantiomers of alpha -pinene and the verbenol isomers showed males more responsive to (-)- alpha -pinene, (±)- cis -verbenol, and ( R )-(+)- trans -verbenol. Significantly greater EAGs were elicited in females than in males to (-)- alpha -pinene, and (±)- and ( S )-(-)- cis -verbenol. No significant differences in EAGs of females to the enantiomers of trans -verbenol were noted. EAGs showed similar thresholds in males and females to the pheromone component, 2-methyl-3-buten-2-ol; however, female response at threshold was significantly greater than male response. The results are discussed with regard to olfactory acceptor evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号