首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探讨油茶(Camellia oleifera)产地土壤和油茶果实中金属元素分布和富集特征,在油茶果实成熟期,对浙江5个油茶产地土壤及油茶果实中金属元素进行污染分析和富集能力评价。结果表明,浙江油茶产地土壤中Pb、Cr、Cd、As、Hg、Ni、Cu和Zn含量低于农用地土壤污染风险筛选值,综合污染等级为安全。个别产区常山县土壤中As、Ni、Cu和江山县土壤中Pb、Cr、Fe含量显著高于其他产地;常山和建德土壤中Cd单因子污染指数分别为0.93和0.81,处于污染警戒线。Cr、Ni、Cu、Zn主要分布在油茶籽中,Hg主要分布在壳中,Pb、Cd、As、Fe和Mn主要分布在青皮中。油茶籽中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Ni、Zn的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As和Hg的富集系数小于0.1,吸收能力低;壳中Cu、Mn的富集系数大于0.4,吸收能力强,Fe的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低;青皮中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低。浙江油茶主产区土壤质量安全,适合油茶种植。油茶果实对Cu、Fe、Mn有一定富集能力,对Pb、Cr、Cd、As和Hg无富集能力。  相似文献   

2.
A comparison was made of the radial oxygen loss (ROL) from the roots of three Typha species, Typha latifolia L., Typha orientalis Presl and Typha angustifolia L., which resemble each other in morphology. ROLs were evaluated in the laboratory for seedlings of T. orientalis and T. angustifolia in order to compare them with the ROL value for T. latifolia obtained in our previous study. Measurements were conducted using the highly oxygen-sensitive anthraquinone radical anion as an oxygen indicator, which enabled us to simulate the natural conditions in which the oxygen released from the root is immediately consumed by the soil. Among the three Typha species, the ROL was the highest in T. angustifolia, followed by T. latifolia and T. orientalis. Illumination significantly enhances the ROL of T. orientalis, and this effect was also observed for T. latifolia in our previous study, whereas it did not affect the ROL of T. angustifolia. These results indicate that ROL differs significantly between species, even among members of the same genus that are similar in morphology.  相似文献   

3.
The responses of root aerobic respiration to hypoxia in three common Typha species were examined. Typha latifolia L., T. orientalis Presl, and T. angustifolia L. were hydroponically cultivated under both aerobic and hypoxic growth conditions to measure root oxygen consumption rates. Hypoxia significantly enhanced the root aerobic respiration capacity of the two deep-water species, T. orientalis and T. angustifolia, while it did not affect that of the shallow-water species, T. latifolia. T. angustifolia increased its root porosity and root mass ratio, while T. latifolia increased its root diameter under the hypoxic growth conditions. The relative growth rates in biomass of T. orientalis and T. angustifolia were 59 and 39% higher, respectively, under the hypoxic growth conditions than under the aerobic growth conditions. In contrast, that of T. latifolia did not differ between the two conditions. In T. orientalis and T. angustifolia, enhanced root aerobic respiration rates under the hypoxic growth conditions would have increased the nutrient uptake, and thus higher relative growth rates were obtained. For the deep-water species, T. orientalis and T. angustifolia, the root aerobic respiration capacity was enhanced, probably in order to maintain the generation of respiratory energy under hypoxia.  相似文献   

4.
The growth strategy of an emergent plant, Typha orientalis Presl, was examined in experimental ponds in comparison with two other Typha species distributed in Japan, Typha latifolia L. and Typha angustifolia L. T. orientalis showed the greatest ability of vegetative reproduction at the expense of growth in height. T. orientalis started to produce new ramets earlier than T. latifolia and T. angustifolia. These results suggest that T. orientalis should be a rather pioneer-like species and would be restricted to disturbed habitats.  相似文献   

5.
Norvell  W. A.  Welch  R. M.  Adams  M. L.  Kochian  L. V. 《Plant and Soil》1993,(1):123-126
Neither the reduction of Fe(III) to Fe(II) by roots nor its induction by Fe-deficiency are unique characteristics of the reductive activities of roots. We show that chelated Mn(III) or chelated Cu(II), as well as chelated Fe(III), may be reduced by Fe-stressed roots of pea (Pisum sativum L.). Deficiency of Fe stimulated the reduction of Fe(III)EDTA about 20-fold, the reduction of Mn(III)CDTA about 11-fold, the reduction of Cu(II)(BPDS)2 about 5-fold, and the reduction of Fe(III)(CN)6 by only about 50%. Not only are metals other than Fe reduced as part of the Fe-stress response, but deficiencies of metals other than Fe stimulate the reductive activity of roots. We show that depriving peas or soybeans (Glycine max) of Cu or Zn stimulates the reduction of Fe(III).  相似文献   

6.
This study follows the outcome of long-term competition between a broad-leaved and a narrowleaved Typha species, T. latifolia and T. angustifolia respectively, in a eutrophic lake. The lake was bordered by a zone of T. latifolia, at one location interrupted by a T. angustifolia stand. Distributional changes of the T. angustifolia stand and the adjacent zone of T. latifolia were measured on aerial photographs (13 years) and along ground-level transects (6 years). A second stand of T. angustifolia was established with transplanted ramets within a formerly homogeneous zone of T. latifolia, and displacement between the two species was measured along ground-level transects after 6 years. Differences between the species in shoot performance were investigated to help explain the relative competitive abilities of the two Typha species. T. angustifolia expanded at the expense of T. latifolia at all water depths where both species occurred, except in very shallow water. Expansion rates suggest that T. angustifolia was not affected by the presence of T. latifolia in water depths exceeding 0.25 m. The Typha species were significantly negatively associated according to rank correlations of shoot densities, and changes of shoot densities, along the transects. These results suggest that T. angustifolia is competitively superior to T. latifolia, contradicting earlier studies. The higher competitive ability of T. angustifolia is consistent with its having taller shoots and a higher standing crop in early summer. Further, shoot height distributions indicated a closer integration of shoot emergence during spring in T. angustifolia than in T. latifolia. A high leaf area/shoot weight ratio suggest that T. latifolia may instead be relatively fast-growing, achieving competitive superiority over narrower-leaved Typha species during a transient period after simultaneous seedling establishment.  相似文献   

7.
In a mature mixed subalpine stand ofTsuga mertensiana andAbies amabilis, significantly higher Al levels were found in foliage, branch and root tissues ofT. mertensiana.Tsuga mertensiana had significant increases in Al, Ca and Mn levels with increasing foliage age. In current foliage,T. mertensiana had lower levels of Ca, similar levels of Mg and P, and higher levels of Mn thanA. amabilis. Both tree species had Cu and Fe present at higher levels in branch than foliage tissues. Fine roots had the highest concentrations of Al, Fe and Cu but the lowest Ca and Mn concentrations of all tissues analyzed. In the roots of both species, phloem tissues always had significantly higher Al levels than xylem. Fine roots (< 1 and 1–2 mm) ofT. mertensiana had higher Al levels than were found inA. amabilis. Roots greater than 2 mm in diameter exhibited no significant differences in Al levels in phloem or xylem tissue betweenA. amabilis andT. mertensiana. The two species show a clear difference in their ability to accumulate specific elements from the soil.  相似文献   

8.
Municipal effluent of three rural settings of Islamabad was assessed for physicochemical and microbiological parameters by collecting wastewater from inlet and center of ponds. Results showed that water quality was comparatively better at the center as Typha latifolia plants were growing toward the center of ponds. In another study, the wastewater treatment ability of T. latifolia was investigated by growing them in industrial and municipal effluent under greenhouse conditions. Water and plant samples were collected periodically (3rd, 10th, 17th, 24th, and 31st day after transplanting) for the measurement of Pb, Cu, and Cd concentrations. A decrease in heavy metal concentration of both effluents was observed as the experiment progressed and metal removal percentages ranged between 81% and 96%. Complementary the increase in metal concentration in plant tissues was observed over experimental period. Among plant tissues, metal concentration of Pb was highest i.e. 362 mg kg?1 in roots and 313 mg kg?1 in shoots at end of experiment. Pb, Cu, and Cd concentrations were higher in roots than shoots and hence translocation factors were less than 1.0. Metal removal efficiency was better from industrial wastewater and was in order of Pb > Cu > Cd. T. latifolia can be used for remediation of heavy metal-polluted wastewater.  相似文献   

9.
不同径级国槐行道树重金属富集效能比较   总被引:6,自引:1,他引:6  
唐丽清  邱尓发  韩玉丽  王荣芬 《生态学报》2015,35(16):5353-5363
采用ICP-OES测定北京市台基厂大街行道树国槐各器官中7种重金属(Cd、Cr、Ni、Cu、Mn、Pb、Zn)含量,比较不同径级国槐重金属富集效能。结果表明:国槐中重金属含量因胸径级、器官、元素种类不同而存在差异。各径级国槐重金属含量大小总体趋势为ZnMnCuPbCrNiCd,各器官中树皮和根对重金属的吸收能力最强,其次是叶和枝,树干对重金属的吸收能力最弱。不同径级国槐对重金属的富集能力存在差异,表现为小径级中径级大径级。国槐各器官中重金属积累量大小顺序为根干枝叶,重金属积累量随着胸径级扩大和生物量的增加而增加。综合比较不同径级国槐重金属年均积累量、单位面积富集量和单位空间富集量,小径级(20≤DBH30 cm)国槐富集效能最高。  相似文献   

10.
Risk element (As, Cd, Cu, Pb, and Zn) contamination in soils and in two edible vegetables (Solanum melongena L. and Capsicum annum L.) was investigated in the vicinity of Guixi Smelter, South China. Soil As concentrations averaged 23.9 mg/kg. Sites near the smelter tailings recorded the highest levels of As and heavy metals in soils. The concentration order of heavy metals in soils was Cd < Pb < Zn < Cu. Cu and Cd in soils were abundant in the exchangeable and bound to carbonate fraction, while Pb and Zn were in the residual fraction, limiting their potential toxicity as pollutants. The proportions of the metals in the mobile fraction followed the order Pb < Zn < Cu < Cd. In Solanum melongena L. and Capsicum annum L., Zn concentration was the highest, followed by Cu, Cd, and Pb, different from that in soils and in the mobile fraction. Concentrations of heavy metals in the labile fractions in soils and in vegetables presented significant correlation (p < 0.05). Both of the two vegetables are not the Cu and Zn accumulators. As for Cd and As, Capsicum annum L. poses a higher risk to animal and human health than Solanum melongena L., with soil-plant transfer coefficients more than three. Root-stem is the main barrier for most of the heavy metals and As in the two vegetables, resulting in higher metal concentrations in roots relative to other plant tissues. The low stem-fruit transfer coefficients for Zn in Solanum melongena L. and for Pb in Capsicum annum L. suggested that very few of them could reach the fruits.  相似文献   

11.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

12.
Luwe  Michael W. F. 《Plant and Soil》1995,168(1):195-202
In a beech (Fagus sylvatica L.) stand in north-west Germany vegetation of two transects (25m:1m and 20m:1m) was mapped and contents of macronutrients (Ca, Mg and K), micronutrients (Fe, Mn, Zn and Cu), and potentially phytotoxic metals (Pb, Cd, Ni and Al) were measured in different soil compartments and in roots, rhizomes, stems and leaves of two forest floor plant species (Mercurialis perennis L. and Polygonatum multiflorum L.). NH4Cl extractable cation contents, pH and other soil variables were also determined.The highest macronutrient contents could be found in the leaves of M. perennis and P. multiflorum. Heavy metals and Al accumulated in the roots. Correlation analysis suggests a considerable translocation of Zn and Cd between below- and above-ground organs of both investigated forest floor plants. No significant correlation was found between the contents of the other elements in the below- and above-ground parts.Available data indicate a considerable uptake by the plants not only of nutrients, but also of heavy metals from the upper mineral soil. Amounts of heavy metals and Al solubilized in the presence of NH4Cl increased with decreasing pH, whereas levels of soluble Ca and Mg were maximal at high pH-values of the extracts. It can be concluded that element uptake in the investigated plants is indirectly controlled by the pH of the upper mineral soil.  相似文献   

13.
Summary Soils influenced by acid mine drainage (pH<5.0) are characterized by low concentrations of essential nutrients and increased solubility of heavy metals. The conditions typically reduce plant establishment and growth. However, river birch (Betula nigra L.) is commonly found along low pH streams in southeastern Ohio. The objective of this study was to determine the concentration of Al, Mn, Ca and Mg inB. nigra tissues.The results indicate Al and Mn are accumulating inB. nigra when compared to other species. Within river birch, Al concentrations are highest in roots; Mn concentrations are highest in leaves. There is not a concomitant reduction in Ca and Mg concentrations as suggested by soil levels.  相似文献   

14.
Zhonghua Wu  Dan Yu 《Hydrobiologia》2004,527(1):241-250
Two experiments were designed to investigate the effects of competition on growth and biomass allocation in Nymphoides peltata. First, competition between N. peltata and Zizania latifolia was assigned with the densities of N. peltata to Z. latifolia ratios of 4:0, 4:2, 4:4 and 4:8. The increase of density of Z. latifolia resulted in apparent decrease of total biomass, relative growth rate (RGR), leaf area ratio (LAR) and mean leaf area per plant of N. peltata. N. peltata allocated above-ground biomass to shoots and roots and decreased the ratios of above-ground to below-ground biomass (A b/B b) with increasing density of Z. latifolia. Second, competitions between N. peltata and emerged Z. latifolia, floating-leavedTrapa bispinosa and submerged Myriophyllum spicatum were studied in the mean time. Total biomass, A b/B b and mean leaf area per plant of N. peltata were higher when competing with floating-leaved T. bispinosa than in N. peltata growing in the community with submerged M. spicatum and emerged Z. latifolia. There were no significant differences in RGR, net assimilation rate (NAR) and LAR of N. peltata when growing with each of the competitor species. Our studies indicate that the growth of N. peltata is strongly inhibited by the presence of Z. latifolia, and N. peltata can show certain competitive advantages over T. bispinosa and M. spicatum.  相似文献   

15.
Hager HA 《Oecologia》2004,140(1):140-149
Non-native plants can have adverse effects on ecosystem structure and processes by invading and out-competing native plants. I examined the hypothesis that mature plants of non-native and native species exert differential effects on the growth of conspecific and heterospecific seedlings by testing predictions that (1) invasive vegetation has a stronger suppressive effect on seedlings than does native vegetation, (2) seedlings of invasive species are better able to grow in established vegetation than are native seedlings, and (3) invasive species facilitate conspecific and inhibit heterospecific seedling growth. I measured growth rates and interaction intensities for seedlings of four species that were transplanted into five wetland monoculture types: invasive Lythrum salicaria; native L. alatum, Typha angustifolia, T. latifolia; unvegetated control. Invasive L. salicaria had the strongest suppressive effect on actual and per-individual bases, but not on a per-gram basis. Seedlings of T. latifolia were better able to grow in established vegetation than were those of L. salicaria and T. angustifolia. These results suggest that L. salicaria is not a good invader of established vegetation, but once established, it is fairly resistant to invasion. Thus, it is likely that disturbance of established vegetation facilitates invasion by L. salicaria, allowing it to compete with other species in even-aged stands where its high growth rate and consequent production of aboveground biomass confer a competitive advantage.  相似文献   

16.
A Method to Estimate Practical Radial Oxygen Loss of Wetland Plant Roots   总被引:1,自引:0,他引:1  
The estimation of practical radial oxygen loss (ROL) of wetland plant roots was attempted in this study. We have devised a new method to measure ROL of wetland plant roots. The whole root system was bathed in an anoxic nutrient solution. Oxygen released from the root was removed immediately by introducing oxygen-free nitrogen gas (O2 < 4 nmol L−1) to mimic natural habitats where released oxygen is consumed rapidly due to chemical and biological oxidation processes. Oxygen removed from the root-bathing chamber was simultaneously detected colorimetrically by use of the highly oxygen-sensitive anthraquinone radical anion (AQ·) in a cell outside the root-bathing chamber, which decolorized by a rapid reaction with oxygen. An emergent macrophyte Typha latifolia L. was incubated, and its ROL was measured by both the new method and one of the conventional methods, the closed chamber/electrode method, by which the ROL of Typha latifolia L. had not yet been measured. The new method succeeded in detecting the ROL, whereas the conventional method was not able to detect oxygen, due to the level being below the detection limit of the oxygen electrode. The oxygen supply via the seedlings of Typha latifolia L. was ca. 10 times higher compared with control measurements without plant. Light illumination significantly enhanced the ROL of Typha latifolia L. (0.33 nmol O2 g−1 root dry weight s−1 under light and 0.18 nmol O2 g−1 root dry weight s−1 in the dark). Theses values fall between those previously reported by the closed chamber/titanium citrate method and the open chamber/electrode method.  相似文献   

17.
This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF–CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF–CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF–CW and then the Cynodon dactylon-planted VSF–CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF–CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09–16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF–CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.  相似文献   

18.
L. M. Chu  M. H. Wong 《Plant and Soil》1987,103(2):191-197
Refuse compost and sewage sludge were mixed with a loamy sand at various rates in pots and sown withBrassica chinensis, Daucus carota andLycopersicon esculentum in a glasshouse. A commercial fertilizer was also applied to the same soil for comparison. Dry matter production of the three crops and contents of Cd, Cu, Mn, Pb and Zn in the harvested tissues were determined at the end of the experiment. In general, crop yield in refuse compost treatment was improved over that in sandy soil alone, but was less than that in the sludge and fertilizer treatments. Despite the relatively high heavy metal contents of refuse compost, crops grown on compost-treated soils accumulated lower levels of metal than those grown on sludge-treated soils. This is probably due to the high pH and organic matter content of the composted refuse. Higher levels of heavy metals were found in the roots than in the aerial parts ofB. chinensis andL. esculentum, but the reverse was found inD. carota. In the edible tissue of the three crops,L. esculentum accumulated metals to a lesser extent than the other two.  相似文献   

19.
四种金花茶组植物叶片金属元素含量及富集特性研究   总被引:1,自引:0,他引:1  
以四种金花茶组植物为研究对象,采用原子吸收光谱法和原子荧光法,测定其嫩叶、老叶及对应土壤中Mg、Ca、Mn、Fe、Zn、Ni、Se、Pb、Cd、Hg、As共11种元素的含量,并分别计算嫩叶和老叶对土壤金属元素的富集系数.结果表明:(1)4种金花茶组植物叶片富含Mg、Ga、Mn、Fe、Zn、Ni等营养元素,各元素在叶片中含量为Ca>Mg>Mn>Fe>Zn>Ni>Se;Pb、Cd、As、Hg等重金属元素含量较低,均达到无公害茶叶标准.(2)老叶和嫩叶中各金属元素含量差异较大,老叶中的Ca、Mn、Fe、Zn、Pb、Cd、Hg、As、Se元素含量均大于嫩叶,尤以Ca、Mn、Fe差异显著;嫩叶中的Mg和Ni含量大于老叶.(3)金花茶组植物对不同金属元素的富集能力不同,对各元素富集能力强弱为Ca、Mn、Mg>Zn、Ni、Hg>Pb、Se>Fe、As,老叶和嫩叶的富集规律存在差异.(4)不同金花茶组植物对金属元素的富集能力有较大差异,龙州金花茶(Camellia longzhouensis)和黄花抱茎茶(C.murauchii)对Mg、Ca、Mn、Zn、Ni、Se、Pb的富集能力均大于金花茶(C.nitidissima)和毛籽金花茶(C.ptilosperma).其中,龙州金花茶对Mg、Mn、Se的富集能力最强,黄花抱茎茶对Ca、Pb、Hg富集能力最强,金花茶对Hg的富集能力较强,对其它元素的富集能力均较弱;毛籽金花茶对Ca、Mn、Ni、Zn的富集能力均最弱.该研究结果为金花茶组植物的进一步开发和利用提供了理论依据.  相似文献   

20.
Tissue-water relations were used to characterize the responses of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) to seasonal and experimental drought conditions. Soil water availability was reduced 15% by partially excluding rain throughfall and lateral flow (water runoff). Seasonal and experimental drought elicited physiological and morphological adaptations other than osmotic adjustment: both species showed large increases in cell-wall elasticity and decreased saturated-to-dry-mass ratio. Increased elasticity (lower elastic modulus) resulted in concurrent decreases in relative water content at turgor loss. In addition, P. latifolia showed significant increases in apoplastic water fraction. Decreased saturated-to-dry-mass ratio and increased apoplastic water fraction were accompanied by an increased range of turgor maintenance, which indicates that leaf sclerophyllous traits might be advantageous in drier scenarios. In contrast, the degree of sclerophylly (as assessed by the leaf mass-to-area ratio) was not related to tissue elasticity. An 15% reduction in soil water availability resulted in significant reductions in diameter growth when compared to control plants in both species. Moreover, although P. latifolia underwent larger changes in tissue water-related traits than Q. ilex in response to decreasing water availability, growth was more sensitive to water stress in P. latifolia than in Q. ilex. Differences in diameter growth between species might be partially linked to the effects of cell-wall elasticity and turgor pressure on growth, since Q. ilex showed higher tissue elasticity and higher intrinsic tolerance to water deficit (as indicated by lower relative water content at turgor loss) than P. latifolia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号