首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
A new b-type cytochrome, cytochrome b561 (Murakami, H., Kita, K., Oya, H., and Anraku, Y. (1984) Mol. Gen. Genet. 196, 1-5) was purified to near homogeneity from the cytochrome b561-amplified Escherichia coli K12 strain HM204/pAM5029. The purified cytochrome b561 was a single polypeptide with a molecular weight of 18,000, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its isoelectric point was determined to be 9.6. The difference spectrum of the cytochrome at 77 K shows a major alpha-absorption peak at 561 nm and a minor peak at 555 nm. The absolute spectrum at room temperature of the oxidized form of the cytochrome had an absorption peak at 414 nm, and that of the reduced form had peaks at 562, 530, and 428 nm. The oxidation-reduction potential of the cytochrome was estimated to be +20 mV. The cytochrome contained 91.2 nmol of heme/mg of protein, showing that it was a cytoplasmic membrane-bound, b-type diheme cytochrome.  相似文献   

2.
A b-type cytochrome and NADH-ferricyanide (FC) reductase were solubilized from Ascaris muscle microsomes by detergents and purified by column chromatography. The purified b-type cytochrome displayed absorption bands at 560 (alpha-peak), 525 (beta-peak), and 424 nm (gamma-peak), with a marked shoulder at 555 nm in the reduced from, 415 nm (gamma-peak) in the oxidized form. This absorption spectrum was different from that of rat liver microsomal cytochrome b5. The molecular weight was estimated to be about 100,000 by SDS-polyacrylamide gel electrophoresis, and the absorption spectrum of alkaline pyridine ferrohemochrome suggested that the prosthetic group of this cytochrome is protoheme. The molecular weight of the purified NADH-FC reductase was estimated to be about 55,000 by SDS-polyacrylamide gel electrophoresis. The purified reductase required NADH as a specific electron donor. The reductase efficiently reduced some redox dyes with NADH, but the reduction of cytochrome c was much slower. The purified reductase, like the membrane-bound reductase, was not inhibited by thiol reagents.  相似文献   

3.
A cDNA for cytochrome b(5) was cloned from a cDNA library of buds of the ascidian, Polyandrocarpa misakiensis, by a hybridization method involving a digoxigenin-labeled cDNA probe of human soluble cytochrome b(5). The nucleotide sequence of the cDNA for the ascidian cytochrome b(5) (Pmb5) consisted of about 1,800 base pairs including 5'- and 3'-noncoding regions, and a coding sequence of 405 base pairs. The amino acid sequence of 135 residues deduced from the coding nucleotide sequence exhibited 54% identity and 76% similarity to chicken cytochrome b(5). A highly conserved amino acid sequence was observed in the amino-terminal domain of 96 residues containing two heme-binding histidine residues. The putative soluble form of the recombinant Pmb5 expressed in Escherichia coli was purified to homogeneity by column chromatographies on an anion-exchanger and gel filtration. The purified Pmb5 showed the typical absorption spectrum of cytochrome b(5) with an asymmetric peak at 556 nm and a shoulder at 560 nm upon reduction with NADH and NADH-cytochrome b(5) reductase. The low temperature spectrum of the dithionite-reduced form of the protein contained the split peaks at 551 and 555 nm, this spectrum being very similar to that of mammalian liver cytochrome b(5). Expression of Pmb5 in the ascidian was examined immunohistochemically with a monoclonal antibody against the Pmb5. Apparently high level expression of Pmb5 was found in the developing buds, but the levels of cytochrome b(5) in the parents and juvenile adults were very low. This is the first report on the characterization of Pmb5, and the increased expression of Pmb5 in the ascidian.  相似文献   

4.
Cytochrome b562-o complex, a terminal oxidase in the respiratory chain of aerobically grown Escherichia coli K12, was isolated in a highly purified form. The purified oxidase is composed of equimolar amounts of two polypeptides, with Mr = 33,000 and 55,000, determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 19.5 nmol of heme and 16.8 nmol of copper/mg of protein, but no detectable nonheme iron, phospholipid, ubiquinone, or menaquinone. In the difference spectrum at room temperature, the oxidase shows a single alpha absorption peak at 560 nm and at 77 K it shows two alpha absorption peaks at 555 and 562 nm. This oxidase combines with CO and the CO difference spectrum at room temperature has a peak at 416 nm and a trough at 430 nm in the Soret region. Its oxidation-reduction potential is estimated to be 125 mV (pH 7.4) and it is pH-dependent (-60 mV/pH) in medium of pH 6.0 to 7.4. It catalyzes electron transport to oxygen via ubiquinol and ascorbate in the presence of phenazine methosulfate or N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. This oxidase activity depends on phospholipids and is sensitive to respiratory inhibitors, such as 2-heptyl-4-hydroxyquinoline N-oxide, piericidin A, KCN and NaN3. The divalent cations Zn2+, Cd2+, and Co2+ inhibit the oxidase activity extensively. The oxidase activity of the cytochrome b562-o complex was inhibited by photoinactivation with rose bengal, suggesting that the inhibition by zinc ion results from modification of a histidine residue of cytochrome o.  相似文献   

5.
A major cytochrome b peptide was purified from yeast mitochondria by a procedure involving solubilization in deoxycholic and cholic acids, ammonium sulfate fractionation, proteolytic digestion, and sucrose gradient centrifugation in the presence of Tween 80. The homogeneity of the purified protein was established by the criteria that the product was spectrally pure and yielded a single band on both sodium dodecyl sulfate polyacrylamide gel electrophoresis, and by gel isoelectric focusing. The purified cytochrome b polypeptide had absorption maxima at 562, 532, and 430 nm in the reduced form and at 525 to 570 nm and 419 nm in the oxidized form. The reduced minus oxidized difference spectra revealed absorption bands at 562, 532, and 430 nm at room temperature and 559, 529, and 429 nm at 77 K, respectively. The heme group was identified as protoheme by formation of the reduced pyridine hemochromogen. Treatment of the reduced form with carbon monoxide affected the absorption spectrum, indicating that the isolated hemoprotein was modified compared to native cytochrome b. The apparent molecular weight of the preparation was 28,000 based on sodium dodecyl sulfate polyacrylamide-gel electrophoresis and 28,800 based on sucrose gradient centrifugation. The isolated cytochrome b polypeptide showed a strong tendency to aggregate.  相似文献   

6.
An a-type cytochrome was purified from Halobacterium halobium. The cytochrome showed an absorption spectrum similar to that of cytochrome aa3; it showed absorption peaks at 420 and 598 nm in the resting state, peaks at 441 and 602 nm in the reduced form, and its CO compound showed peaks at 430 and 600 nm. The cytochrome molecule was composed of only one kind of polypeptide with the molecular weight of 40,000. The cytochrome contained two heme a molecules in the molecule but no copper. The cytochrome did not show cytochrome c oxidase activity. Midpoint redox potential at pH 8.0 of the cytochrome was determined to be +0.31 V. The amino acid composition of the cytochrome resembled that of subunit I of mitochondrial cytochrome aa3. While two molecules of heme a were reduced with sodium dithionite, only one of two heme a molecules was reduced with ascorbate plus TMPD. The heme a reduced with ascorbate plus TMPD did not react with molecular oxygen or carbon monoxide, while one of two heme a molecules reduced with sodium dithionite was oxidized by molecular oxygen and combined with carbon monoxide.  相似文献   

7.
Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli.  相似文献   

8.
Microsomal cytochrome P-450 from tulip bulbs (Tulipa gesneriana L., Balalaika) was purified to an almost electrophoretically homogeneous preparation. The specific content of cytochrome P-450 in the final preparation was 6.68 nmol/mg protein, which was 30-fold enriched from that of the solubilized fractions of microsomes. The molecular weight of purified cytochrome P-450 by SDS-gel electrophoresis is 52,500. The Oxidized form of the purified cytochrome P-450 had absorption peaks at 392, 552, and 645 nm and the absolute reduced CO spectrum peaked at 448 nm. Judged spectrally, the purified cytochrome P-450 is in high spin in the oxidized state. Antiserum against this cytochrome P-450 previously has shown to be highly specific for its antigen but showed a single precipitin line with solubilized microsomal proteins from tulip bulbs of several other cultivars. The physiological role of this cytochrome P-450, however, is unknown in these dormant tulip bulbs.  相似文献   

9.
A "double-alpha" c-type cytochrome, cytochrome c-555, 549, was isolated from the membrane fraction of an extreme thermophile, Thermus thermophilus HB8, and highly purified by chromatographies on DEAE-cellulose and Sephadex G-75 and by isoelectric focusing. The absorption maxima were at 554.8, 548.6, 522, and 417 nm in the reduced form, and at 528, 409, and 360 nm in the oxidized form. The double alpha-peak of this cytochrome was enhanced at liquid nitrogen temperature. The cytochrome contained one heme c group per protein molecule. The isoelectric point, midpoint redox potential and molecular weight were pH 4.0, +0.206 V and about 10,000, respectively. Cytochrome c-555, 549 is highly thermostable.  相似文献   

10.
A cytochrome b560-d complex, a terminal oxidase in the respiratory chain of Photobacterium phosphoreum grown under aerobic conditions, was purified to near homogeneity. The purified oxidase complex is composed of equimolar amounts of two polypeptides with molecular weights of 41,000 and 54,000, as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 10.2 nmol of protoheme and 22.5 nmol of iron/mg of protein. The enzyme is a "cytochrome bd-type oxidase," showing absorption peaks at 560 and 625 nm in its reduced minus oxidized difference spectrum at 77K. This oxidase combined with CO, and its CO difference spectrum at room temperature in the Soret region showed a peak at 418 nm and a trough at 434 nm. In addition, a trough at 560 nm (cytochrome b), and a trough at 620 nm and a peak at 639 nm (cytochrome d) were observed in the CO-binding spectrum. This cytochrome b560-d complex catalyzed the oxidation of ubiquinol-1 and ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride or phenazine methosulfate. The oxidase activity required phospholipids and was inhibited by the respiratory inhibitors, KCN and NaN3, and the divalent cation, ZnSO4. Formation of a membrane potential by the cytochrome b560-d complex reconstituted into liposomes was observed with the fluorescent dye, 3,3'-dipropylthiodicarbocyanine iodide, on the addition of ubiquinol-1, showing that the enzyme provided a coupling site for oxidative phosphorylation.  相似文献   

11.
The iron-oxidizing activity of a moderately thermophilic iron-oxidizing bacterium, strain TI-1, was located in the plasma membrane. When the strain was grown in Fe2+ (60 mM)-salts medium containing yeast extract (0.03%), the plasma membrane had iron-oxidizing activity of 0.129 mumol O2 uptake/mg/min. Iron oxidase was solubilized from the plasma membrane with 1.0% n-octyl-beta-D-glucopyranoside (OGL) containing 25% (v/v) glycerol (pH 3.0) and purified 37-fold by a SP Sepharose FF column chromatography. Iron oxidase solubilized from the plasma membrane was stable at pH 3.0, but quite unstable in the buffer with the pH above 6.0 or below 1.0. The optimum pH and temperature for iron oxidation were 3.0 and 55 degrees C, respectively. Solubilized enzyme from the membrane showed absorption peaks characteristic of cytochromes a and b. Cyanide and azide, inhibitors of cytochrome c oxidase, completely inhibited iron-oxidizing activity at 100 microM, but antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) and myxothiazol, inhibitors of electron transport systems involved with cytochrome b, did not inhibit enzyme activity at 10 microM. The absorption spectrum of the most active enzyme fraction from SP Sepharose FF column chromatography (4.76 mumol O2 uptake/mg/min) compared with lower active fractions from the chromatography (0.009 and 2.10 mumol O2 uptake/mg/min) showed a large alpha-peak of cytochrome a at 602 nm and a smaller alpha-peak of cytochrome b at 560 nm. The absorption spectrum of pyridine ferrohemochrome prepared from the most highly purified enzyme showed an alpha-peak characteristic of heme a at 587 nm, but not the alpha-peak characteristic of heme c at 550 nm. The cytochrome a, but not cytochrome b, in the most highly purified enzyme fraction was reduced by the addition of ferrous iron at pH 3.0, indicating that electrons from Fe2+ were transported to cytochrome a, but not cytochrome b. These results strongly suggest that cytochrome a, but not cytochromes b and c, is involved in iron oxidation of strain TI-1.  相似文献   

12.
Two subcellular fraction, P-1 and P-2, were isolated by differential centrifugation from 0.25 M sucrose muscle homogenates of the parasitic roundworm, Ascaris lumbricoides suum. Morphological studies indicated that P-1 fraction consisted of intact mitochondria, whereas P-2 fraction consisted almost exclusively of vesicular components. The difference spectrum of Ascaris microsomes showed a characteristic b-type cytochrome spectrum with three distinct absorption peaks at 560, 525, and 424 nm. However, the alpha-peak at 560 nm was asymmetric with a shoulder at 555 nm. This microsomal b-type cytochrome was reduced by NADH, which was inhibited by rotenone and HgCl2. The reduced b-type cytochrome was easily reoxidized by shaking. NADH-oxidase activity observed in Ascaris microsomes was inhibited by rotenone, but not by KCN, NaN3, and antimycin A. On the other hand, NADH-cytochrome c and NADH-neotetrazolium (NT) reductase activities in Ascaris microsomes were not inhibited by antimycin A and rotenone, but were inhibited by HgCl2. Further observations indicated that neither HgCl2 nor rotenone inhibited Ascaris microsomal NADH-ferricyanide (FC) reductase activity, but rabbit antibody prepared against the purified NADH-FC reductase inhibited the NADH-cytochrome c reductase activity, the reduction of b-type cytochrome and the NADH-oxidase activity, as well as microsomal NADH-FC reductase activity.  相似文献   

13.
Cytochromebc was partially purified from the methanogen,Methanosarcina barkeri. The cytochrome was composed of three subunits with molecular masses of 23.4, 20.9, and 9.1 kDa, respectively, and the 23.4 kDa subunit contained haemc. The absorption spectrum of cytochromebc showed a peak at 411 nm in the oxidized form, and peaks at 554, 524, and 422 nm in the reduced form. The cytochrome reacted with CO, and its low temperature absorption spectrum showed the peak at 552 nm with a shoulder at 557 nm.  相似文献   

14.
Abstract Membrane-bound cytochrome c, cytochrome c-552 (m) was purified from Thiobacillus ferrooxidans . It showed an absorption peak at 410 nm in the oxidized form, and peaks at 552, 523 and 416 nm in the reduced form. Its molecular mass, E m,7 and isoelectric point were 22,300, +0.336 volt and 9.1, respectively. Another membrane-bound cytochrome c , cytochrome c -550 (m) was also purified. It showed an absorption peak at 408 nm in the oxidized form, and peaks at 550, 523 and 418 nm in the reduced form. Its molecular mass was estimated to be 51,000. Ferrocytochromes c -552 (m) and c -55 (m) were oxidized by cytochrome c oxidase of the bacterium. The reactivity with the oxidase of cytochrome c -550 (m) was higher than that of cytochrome c -552 (s) (soluble cytochrome) of the bacterium, while the reactivity of cytochrome c -552 (m) was greatly lower than that of cytochrome c -552 (s).  相似文献   

15.
J.Peter Kusel  Bayard T. Storey 《BBA》1973,305(3):570-580
Highly purified mitochondrial preparations from the trypanosomatid hemoflagellate, Crithidia fasciculata (A.T.C.C. No.11745), were examined by low-temperature difference spectroscopy. The cytochrome a+a3 maximum of hypotonically-treated mitochondria reduced with succinate, was shifted from 605 nm at room temperature to 601 nm at 77 °K. The Soret maximum, found at 445 nm at 23 °C, was split at 77 °K into two approximately equally absorbing species with maxima at 438 and 444 nm. A prominent shoulder observed at 590 nm with hypotonically-treated mitochondria was not present in spectra of isotonic controls.

The cytochrome b maxima observed in the presence of succinate plus antimycin A were shifted from the 431 and 561 nm positions observed at 23 °C to 427 and 557 nm at 77 °K. Multiple b cytochromes were not apparent.

Unlike other soluble c-type cytochromes, the maximum of cytochrome c555 was not shifted at 77 °K although it was split to give a 551 nm shoulder adjacent to the 555 nm maximum. This lack of a low-temperature blue shift was true for partially purified hemoprotein preparations as well as in situ in the mitochondrial membrane.

Using cytochrome c555-depleted mitochondria, a cytochrome c1 pigment was observed with a maximum at 420 nm and multiple maxima at 551, 556, and 560 nm. After extraction of non-covalently bound heme, the pyridine hemochromogen difference spectrum of cytochrome c555-depleted preparations exhibited an maximum at 553 nm at room temperature.

The reduced rate of succinate oxidation by cytochrome c555-depleted mitochondria and the ferricyanide requirement for the reoxidation of cytochrome c1, even in the presence of antimycin, indicated that cytochrome c555-mediated electron transfer between cytochromes c1 and a+a3 in a manner analagous to that of cytochrome c in mammalian mitochondria.  相似文献   


16.
Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme, respectively.  相似文献   

17.
A peroxidase was purified from Halobacterium halobium L-33 to an electrophoretically homogeneous state and some of its properties were studied. The enzyme showed an absorption peak at 406 nm in the oxidized form and peaks at 440, 558, and 591 nm in the reduced form. The difference spectrum, reduced + CO minus reduced, of the enzyme showed peaks at 425, 538, and 577 nm and troughs at 444, 562, and 596 nm. These spectral properties were apparently similar to those of "cytochrome a1" except for the occurrence of the peak at 558 nm in the reduced form. The molecular weight of the enzyme was 110,000 and the enzyme possessed one unit of protoheme in the molecule. The activity to oxidize guaiacol in the presence of H2O2 of the peroxidase was about one-twentieth of that of horseradish peroxidase. The enzyme also showed a catalase-activity one-fourth as active as that of liver catalase. The reactions catalyzed by the enzyme were strongly inhibited by KCN.  相似文献   

18.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

19.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25 degrees C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol 49, 421--429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm. The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0--2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6--4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively. Absorption spectra at 25 degrees C and at --196 degrees C of the water-soluble chlorophyll proteins were compared by the curve-fitting methods. The component bands at --196 degrees C were blue-shifted by 0.8--4.1 nm and narrower in half widths as compared to those at 25 degrees C.  相似文献   

20.
In sperm of the echiuroid, Urechis unicinctus, respiration in the presence of CO was reversibly augmented by light irradiation in an examined range of wavelengths between 350 and 650 nm. The respiratory rate of sperm in the presence of CO was enhanced by light irradiation in proportion to the light fluence rate. A sharp and large peak was obtained at the wavelength of 430 nm in the action spectrum of photo-activated respiration of sperm in the presence of CO. Broad and small peaks were also found at around 530 and 570 nm. This action spectrum is similar in its profile to the absorption spectrum of reduced cytochrome b. Absorption of photon energy by reduced b-type cytochrome probably activates the redox reaction of this cytochrome to enhance the respiratory rate. Photo-activated respiration in the presence of CO was inhibited by antimycin A and cyanide. In this respiratory system, an electron equivalent is probably transferred through the mitochondrial respiratory chain between cytochrome b and cytochrome c and finally to molecular oxygen in the reaction catalyzed by the CO-insensitive terminal oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号