首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.  相似文献   

2.
Pigs are anatomically and physiologically closer to humans than other laboratory animals. Transgenic (TG) pigs are widely used as models of human diseases. The aim of this study was to produce pigs expressing a tetracycline (Tet)-inducible transgene. The Tet-on system was first tested in infected donor cells. Porcine fetal fibroblasts were infected with a universal doxycycline-inducible vector containing the target gene enhanced green fluorescent protein (eGFP). At 1 day after treatment with 1 µg/ml doxycycline, the fluorescence intensity of these cells was increased. Somatic cell nuclear transfer (SCNT) was then performed using these donor cells. The Tet-on system was then tested in the generated porcine SCNT-TG embryos. Of 4,951 porcine SCNT-TG embryos generated, 850 were cultured in the presence of 1 µg/ml doxycycline in vitro. All of these embryos expressed eGFP and 15 embryos developed to blastocyst stage. The remaining 4,101 embryos were transferred to thirty three surrogate pigs from which thirty eight cloned TG piglets were obtained. PCR analysis showed that the transgene was inserted into the genome of each of these piglets. Two TG fibroblast cell lines were established from these TG piglets, and these cells were used as donor cells for re-cloning. The re-cloned SCNT embryos expressed the eGFP transgene under the control of doxycycline. These data show that the expression of transgenes in cloned TG pigs can be regulated by the Tet-on/off systems.  相似文献   

3.
The efficiency of porcine somatic nuclear transfer (born piglets/transferred embryos) is low. Here, we report a highly efficient protocol using peripubertal gilts as recipients synchronized to ovulate approximately 24 h after transfer of cloned embryos. Retrospectively, we compared the efficiency of two different synchronization protocols: In group 1, recipient animals were synchronized to ovulate approximately 6 h prior to surgical embryo transfer while in group 2 the animals were treated to ovulate 24 h after embryo transfer. In total, 1562 cloned embryos were transferred to 12 recipients in group 1; two of them became pregnant (16.7%). One pregnancy was lost on day 32, the second pregnancy went to term, and led to the birth of one healthy piglet after Cesarean section. In group 2, 1531 cloned embryos were transferred to 12 recipients. Nine recipients (75.0%) became pregnant as determined by ultrasound scanning on day 25. All pregnancies went to term and delivered a total of 47 live-born piglets. The cloning efficiency of both groups differed significantly (group 1: 0.1%, group 2: 3.1%, p < 0.05). This modified protocol was then applied in subsequent experiments using different types of transgenic and nontransgenic donor cells with similar success rates. Results show that this protocol is robust and highly reproducible, and can thus be employed for routine production of cloned pigs.  相似文献   

4.
The objective of this study was to examine whether the ICSI-mediated gene transfer method using in vitro matured oocytes and frozen sperm head could actually produce transgenic pigs. We also aimed at examining whether transgenic pigs can be cloned from somatic cells of a transgenic pig generated by the ICSI-mediated method. A bicistronic gene constituted of the human albumin (hALB) and enhanced green fluorescent protein (EGFP) genes was introduced into pig oocytes by the ICSI-mediated method. Transfer of 702 embryos produced by the ICSI-mediated method into five gilts resulted in 4 pregnancies. When three of the recipients, which had received total 312 of the embryos were autopsied, 32 including 1 transgenic fetuses were obtained. One of the recipients gave birth to three live piglets including one transgenic pig, showing a strong green fluorescence in the eyeballs, oral mucous membrane and subcutaneous tissues. Fluorescent microscopy revealed uniform GFP expression in all cell lines established from kidney, lung and muscle of the founder transgenic pig obtained. Nuclear transfer of these cells resulted in stable in vitro development of cloned embryos into the blastocyst stage, ranging from 12.9 to 19.8%. When 767 of the nuclear transfer embryos were transferred to 5 recipients, all became pregnant and gave birth to a total of six live transgenic-clones. The transgene copy number and integrity in the founder pig were maintained in the primary culture cells established from the founder as well as in the clones produced from these cells. Our study demonstrates that the ICSI-mediated gene transfer is an efficient and practical method to produce transgenic pigs, using frozen sperm heads and in vitro matured oocytes. It was also shown that combination of ICSI-mediated transgenesis and nuclear transfer is a feasible technology of great potential in transgenic pig production.  相似文献   

5.
Lee GS  Kim HS  Hyun SH  Lee SH  Jeon HY  Nam DH  Jeong YW  Kim S  Kim JH  Han JY  Ahn C  Kang SK  Lee BC  Hwang WS 《Theriogenology》2005,63(4):973-991
This study was performed to develop a system for porcine somatic cell nuclear transfer (SCNT) and to produce human erythropoietin (hEPO)-transgenic cloned piglets. Porcine fetal fibroblasts were transfected with an expression plasmid (phEPO-GFP). In Experiment 1, the effect of transfection of phEPO-GFP transgene on development of porcine SCNT embryos was investigated. Three fetal fibroblast cell lines (two male and one female) with or without transfected with phEPO-GFP trasngene were used as donor cells for SCNT. Lower fusion rates were observed in two lines of transfected cells as compared to those of the control cells. In Experiment 2, the effect was examined of elevated Ca2+ concentration in the fusion/activation medium on development of transfected SCNT embryos. The rates of fusion and blastocyst formation were significantly increased by supplementing 1.0 mM of CaCl2 (versus 0.1 mM) into the fusion/activation medium. In Experiment 3, the effect was studied of a chemical treatment (cytochalasin B) after electric fusion/activation (F/A) on porcine transgenic SCNT embryo development. The electric F/A + cytochalasin B treatment increased total cell number in blastocysts as compared to that of electric F/A treatment alone. In Experiment 4, transgenic cloned embryos were transferred to surrogate mothers and a total of six cloned piglets were born. Transgenic cloned piglets were confirmed by polymerase chain reaction and Southern blot analysis. From a single surrogate mother, female and male transgenic cloned piglets were produced by transferring pooled SCNT embryos derived from female and male transfected donor cells. In conclusion, a system for porcine SCNT was developed and led to the successful production of hEPO transgenic cloned piglets.  相似文献   

6.
7.
The developmental competence of domestic pig oocytes that were transferred to somatic cell nuclei of miniature pig was examined. A co-culture system of oocytes with follicle shells was used for the maturation of domestic pig oocytes in vitro. Co-cultured oocytes progressed to the metaphase II stage of meiosis more quickly and more synchronously than non co-cultured oocytes. Oocytes were enucleated and fused with fibroblast cells of Potbelly miniature pig at 48 h of maturation. The blastocyst formation rate of nuclear transfer (NT) embryos using cocultured oocytes (24%) was significantly higher (p < 0.05) than that of non-co-cultured oocytes (13%). Cleaved embryos at 48 h after nuclear transfer using co-cultured oocytes were transferred to the oviducts of 14 G?ttingen miniature pigs and four Meishan pigs. Estrus of all G?ttingens returned at around 20-31 days of pregnancy. Two of the four Meishans became pregnant. Three and two cloned piglets were born after modest number of embryo transfer (15 and 29 embryos transferred), respectively. These results indicated that oocytes co-cultured with follicle shells have a high developmental competence after nuclear transfer and result in full-term development after embryo transfer.  相似文献   

8.
We have reported relatively efficient methods for somatic cell nuclear transfer and for knocking out the alpha(1,3)-galactosyltransferase (alpha1,3-GT) gene in porcine fetal fibroblasts using a nonisogenic promoterless construct approach. Here we report the production of alpha1,3-GT gene knockout pigs using these procedures. Seven alpha1,3-GT gene knockout cell clones were identified by long-range PCR from 108 neomycin resistant (neo(R)) colonies, giving a 6.5% targeting efficiency. Three cell clones were used for nuclear transfer. Nuclear transfer was performed using a fusion before activation protocol using in vitro-matured adult oocytes. Between 51 and 110 fused couplets were transferred to 10 recipients synchronized 1 day behind the embryos. Parturition was induced on day 115, and piglets were delivered by caesarean section. Four recipients gave birth to a total of 18 live piglets. All pigs were female, and all three clones resulted in the birth of live pigs. alpha1,3-GT gene knockout pigs were identified by long-range PCR and confirmed by Southern blot analysis. The efficiency (embryos transferred/piglets born) of our cloning protocol was 1.9% for all transfers and 4.6% for animals that gave birth.  相似文献   

9.
The aim of this study was to report from a larger study with pregnancy and delivery results after transfer of cloned transgenic/non-transgenic Large White or minipig embryos to Large White sow recipients. The effect of both total numbers of transferred embryos as well as site of their deposition (uni- vs. bi-lateral) was studied.Four to five days after natural heat, 85 Large White (LW) sows received Day 5 or 6 handmade cloned embryos. Large White embryos were non-transgenic and were transferred to 36 recipients, while 49 recipients each received Minipig embryos, either non-transgenic or with 1 of 4 types of transgenes. Furthermore, the number of embryos transferred was in two categories, as 46 recipients received 40-60 embryos while 39 received 60-120 embryos. Finally, in 59 of the recipients embryos were transferred to one of the uterine horns (unicornual) while 26 other recipients had embryos transferred to both uterine horns (bicornual).The overall pregnancy rate was 55% with an abortion rate of 26% resulting in 41% deliveries with no difference between LW and Minipig embryos and no difference between transgenic and non-transgenic Minipig embryos. Transfer of 60-120 embryos resulted in more pregnancies and deliveries (62%) than <60 embryos (24%). The mean litter size was 5.1 ± 0.5 and after transfer of 60-120 embryos significantly higher (6.0 ± 0.5) than after transfer of <60 embryos (3.5 ± 0.8). Also, the bicornual transfer resulted in significantly higher delivery rate (74% vs. 44%) and mean litter size (6.1 ± 0.7 vs. 4.2 ± 0.6) than the unicornual. The mean rate of piglets/transferred embryos was 7.3 ± 0.6% while the mean rate of piglets/reconstructed embryos was 179/18,000 = 1% with no difference between breeds or number of embryos transferred. The overall perinatal mortality rate was 49%, and it was significantly lower in LW piglets (20/59 = 34%) than in Minipiglets (67/120 = 56%) (vs. 10-15% in normal piglets at the farm) and the total rate of piglets with one or more malformation was 22%, and lower in LW (12%) than in Minipiglets (28%).This study demonstrate that although the perinatal mortality was rather high, an acceptable birth rate can be achieved after transfer to LW recipients of cloned LW embryos as well as cloned, transgenic/non-transgenic Minipig embryos. Furthermore, the pregnancy rate and litter size were correlated to the number of embryos transferred and to bicornual transfer.  相似文献   

10.
11.
12.
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101–150, 151–200 or 201–250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.  相似文献   

13.
This study investigated the effects of two different activation regimens on the developmental potential of somatic cell nuclear transfer (SCNT) embryos and postnatal survivability of the cloned piglets. In vitro matured oocytes were enucleated and reconstructed with porcine fetal fibroblasts. On the basis of the activation regimen used, the reconstructed porcine embryos were allocated into two groups: Group 1—simultaneous electrical pulses and activation group (SFA group); and Group 2—electrical fusion without calcium followed by electrical pulses with calcium after colcemid and cytochalasin B treatment for 5 h (DA group). Embryonic development in both SFA and DA groups was determined at day 6 of culture in NSCU-23 medium. To investigate the post-implantation development after the two activation methods, embryos were cultured for 1 day and then transferred into the oviducts of estrus-synchronized recipients. DA group had significantly (p < 0.05) higher cleavage rates than SFA group. However, the developmental rate to the blastocyst stage and the mean cell number of blastocysts did not differ (p > 0.05) between SFA and DA groups. Moreover, the pregnancy rate of SFA group was not significantly different compared to DA group. A total of 20 cloned piglets (SFA group-8 live piglets, DA group-11 live piglets and one stillborn) were obtained in the present study. The birth weight of the cloned piglets (live births) did not differ (p > 0.05) between the two groups. Furthermore, no difference was observed in the postnatal survival rates of the cloned piglets obtained using two different activation regimens. These results suggest that the timing of artificial activation and additional chemical treatments do not affect the developmental rate of porcine SCNT embryos. Remarkably, the pregnancy rate and postnatal survivability of the cloned piglets did not vary between SFA and DA groups.  相似文献   

14.
Fetal-derived fibroblast cells were transduced with replication defective vectors containing the enhanced green fluorescent protein (EGFP). The transgenic cells were treated with colchicine, which theoretically would synchronize the cells into G2/M stage, and then used as donor nuclei for nuclear transfer. The donor cells were transferred into the perivitalline space of enucleated in vitro matured porcine oocytes, and fused and activated with electrical pulses. A total of 8.3% and 28.6% of reconstructed oocytes showed nuclear envelope breakdown and premature chromosome condensation 0.5 and 2 hr after activation, respectively. Percentage of pronuclear formation was 62.5, 12 hr after activation. Most (91.4%) of the 1-cell embryos with pronuclei did not extrude a polar body. Most (77.2%) embryos on day 5 were diploid. Within 2 hr after fusion, strong fluorescence was detectable in most reconstructed oocytes (92.3%). The fluorescence in all NT embryos became weak 15 hr after fusion and disappeared when culture to 48 hr. But from day 3, cleaved embryos at the 2- to 4-cell stage started to express EGFP again. On day 7, 85.8% of cleaved embryos expressed EGFP. A total of 9.4% of reconstructed embryos developed to blastocyst stage and 71.5% of the blastoctysts expressed EGFP. After 200 reconstructed 1-cell stage embryos were transferred into four surrogate gilts, three recipients were found to be pregnant. One of them maintained to term and delivered a healthy transgenic piglet expressing EGFP. Our data suggest that the combination of transduction of somatic cells by a replication defective vector with the nuclear transfer of colchicine-treated donors is an alternative to produce transgenic pigs. Furthermore, the tissues expressing EGFP from descendents of this pig may be very useful in future studies using pigs that require genetically marked cells.  相似文献   

15.
This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.  相似文献   

16.
Park KW  Choi KM  Hong SP  Han GS  Yoo JY  Jin DI  Seol JG  Park CS 《Theriogenology》2008,70(9):1431-1438
We used nuclear transfer (NT) to develop transgenic female pigs harboring goat beta-casein promoter/human granulocyte-macrophage colony stimulating factor (hGM-CSF). The expression of hGM-CSF was specific to the mammary gland, and the glycosylation-derived size heterogeneity corresponded to that of the native human protein. Although various cell types have been used to generate cloned animals, little is currently known about the potential use of fibroblasts derived from a cloned fetus as donor cells for nuclear transfer. The developmental potential of porcine cloned fetal fibroblasts transfected with hGM-CSF was evaluated in the present study. Cloned fetal fibroblasts were isolated from a recipient following the transplantation of NT embryos. The cells were transfected with both hGM-CSF and the neomycin resistance gene in order to be used as donor cells for NT. Reconstructed embryos were implanted into six sows during estrus; two of the recipient sows delivered seven healthy female piglets with the hGM-CSF gene (confirmed with PCR and fluorescent in situ hybridization) and microsatellite analysis confirmed that the clones were genetically identical to the donor cells. The expression of hGM-CSF was strong in the mammary glands of a transgenic pig that died a few days prior to parturition (110 d after AI). These results demonstrated that somatic cells derived from a cloned fetus can be used to produce recloned and transgenic pigs.  相似文献   

17.
《Theriogenology》2009,71(9):1431-1438
We used nuclear transfer (NT) to develop transgenic female pigs harboring goat beta-casein promoter/human granulocyte-macrophage colony stimulating factor (hGM-CSF). The expression of hGM-CSF was specific to the mammary gland, and the glycosylation-derived size heterogeneity corresponded to that of the native human protein. Although various cell types have been used to generate cloned animals, little is currently known about the potential use of fibroblasts derived from a cloned fetus as donor cells for nuclear transfer. The developmental potential of porcine cloned fetal fibroblasts transfected with hGM-CSF was evaluated in the present study. Cloned fetal fibroblasts were isolated from a recipient following the transplantation of NT embryos. The cells were transfected with both hGM-CSF and the neomycin resistance gene in order to be used as donor cells for NT. Reconstructed embryos were implanted into six sows during estrus; two of the recipient sows delivered seven healthy female piglets with the hGM-CSF gene (confirmed with PCR and fluorescent in situ hybridization) and microsatellite analysis confirmed that the clones were genetically identical to the donor cells. The expression of hGM-CSF was strong in the mammary glands of a transgenic pig that died a few days prior to parturition (110 d after AI). These results demonstrated that somatic cells derived from a cloned fetus can be used to produce recloned and transgenic pigs.  相似文献   

18.
Genetically modified pigs are valuable models of human disease and donors of xenotransplanted organs.Conventional gene targeting in pig somatic cells is extremely inefficient.Zinc-finger nuclease(ZFN)technology has been shown to be a powerful tool for efficiently inducing mutations in the genome.However,ZFN-mediated targeting in pigs has rarely been achieved.Here,we used ZFNs to knock out the porcineα-1,3-galactosyl-transferase(GGTA1)gene,which generates Gal epitopes that trigger hyperacute immune rejection in pig-to-human transplantation.Primary pig fibroblasts were transfected with ZFNs targeting the coding region of GGTA1.Eighteen mono-allelic and four biallelic knockout cell clones were obtained after drug selection with efficiencies of 23.4%and 5.2%,respectively.The biallelic cells were used to produce cloned pigs via somatic cell nuclear transfer(SCNT).Three GGTA1 null piglets were born,and one knockout primary fibroblast cell line was established from a cloned fetus.Gal epitopes on GGTA1 null pig cells were completely eliminated from the cell membrane.Functionally,GGTA1 knockout cells were protected from complement-mediated immune attacks when incubated with human serum.This study demonstrated that ZFN is an efficient tool in creating gene-modified pigs.GGTA1 null pigs and GGTA1 null fetal fibroblasts would benefit research and pig-to-human transplantation.  相似文献   

19.
The key research areas of the Department are: in vitro production of embryos, embryo cryopreservation, animal transgenesis, cloning, cytometric semen sexing and evaluation. Research has been focused on the in vitro production of animal embryos, including the development of complex methods for oocyte maturation, fertilization and embryo culture. Moreover, experiments on long-term culturing of late preantral and early antral bovine ovarian follicles have been developed. Studies on the cloning of genetically modified pigs with "humanized" immunological systems have been undertaken. A cloned goat was produced from oocytes reconstructed with adult dermal fibroblast cells. The novel technique of rabbit chimeric cloning for the production of transgenic animals was applied; additionally, the recipient-donor-cell relationship in the preimplantation developmental competences of feline nuclear transfer embryos has been studied. Regarding transgenic animal projects, gene constructs containing growth hormone genes connected to the mMt promoter were used. Modifications of milk composition gene constructs with tissue-specific promoters were performed. Moreover, pigs for xenotransplantation and animal models of human vascular diseases have been produced. Over the last 15 years, our flow cytometry research group has focused its work on new methods for sperm quality assessment and sex regulation. In the 1970s, our team initiated studies on embryo cryopreservation. As a result of vitrification experiments, the world's first rabbits and sheep produced via the transfer of vitrified embryos were born.  相似文献   

20.
Live rabbits have previously been generated through nuclear transfer using adult cells as nuclear donors. We demonstrated in this study that transfected adult rabbit fibroblasts are also capable of supporting full-term development. The fibroblasts were transfected with a pEGFP-C1 plasmid using lipofectamine 2000, and the transgenic cells were derived from conditioned medium. The transgenic fibroblasts were cultured until confluent and then serum-starved prior to be used as nuclear donors. After nuclear transfer and activation, 22% (12/55) of the transgenic cloned embryos developed to the blastocyst stage. A total of 114 embryos at the 4- to 8-cell stage were transferred to the oviducts of 8 pseudo-pregnant mothers; 5 of these animals became pregnant, and 3 of the 5 mother rabbits carried the pregnancy to term. Caesarean section was performed on the 3 pregnant mothers, yielding 4 kits, one of which has survived for more than 9 months. Green fluorescence could be detected in the toenails of the living cloned rabbit and the offspring from the living cloned rabbit under ultraviolet light. DNA analyses confirmed that all 4 cloned rabbits were genetically identical to the transgenic donor cells, and that they all carried the EGFP gene. The present study demonstrated that transgenic rabbits can be generated through nuclear transfer. These results may facilitate future developments in the genetic engineering of rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号