首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantification of 4-hydroxy-2-nonenal (HNE) bound to circulating proteins may prove to be useful in evaluating the role of this bioactive lipoperoxidation by-product in the pathogenesis of various diseases. Recently, we developed a quantitative gas chromatography–mass spectrometry (GCMS) assay of total protein-bound HNE (HNE-P) in blood after reduction with NaB2H4 and cleavage with Raney nickel. Whereas it has been assumed that Raney nickel cleaves only Michael adducts of HNE to cysteine via a thioether bond (HNE-SP), results from this study demonstrate that our GCMS method also detects with precision picomoles of HNE adducts via nitrogen residues (HNE-NP). Specifically, evidence was obtained using various study models, including polyamino acids consisting of cysteine, lysine, and histidine and a biologically relevant molecule, albumin. Furthermore, we show that dinitrophenylhydrazine treatment before Raney nickel treatment can be used to discriminate and quantify the various HNE-P molecular species in plasma and blood samples from normal rats, which range between 0.15 and 3 pmol/mg protein or 10 to 600 nM. However, whereas HNE-SP predominated in whole blood, we detected HNE-NP only in plasma. We also identified another significant MS signal, which we attribute to protein-bound 1,4-dihydroxynonane (DHN-P) presumably formed from the enzymatic reduction of HNE-P. The distribution profile of all these species in plasma differed from that observed when physiologically relevant concentrations of albumin and HNE were incubated in vitro. Furthermore, interestingly, hypercholesterolemic rabbits showed higher plasma levels of HNE-NP, but not of DHN-P. Beyond documenting the presence of various types of HNE-P in circulating proteins, our results emphasize the importance of enzymatic mechanisms in situ as a factor determining their distribution in the various blood compartments under various conditions.  相似文献   

2.
Mitochondrial dysfunction subsequent to increased oxidative stress and alterations in energy metabolism is considered to play a role in the development of cardiac hypertrophy and its progression to failure, although the sequence of events remains to be elucidated. This study aimed at characterizing the impact of hypertrophy development on the activity and expression of mitochondrial NADP+-isocitrate dehydrogenase (mNADP+-ICDH), a metabolic enzyme that controls redox and energy status. We expanded on our previous finding of its inactivation through posttranslational modification by the lipid peroxidation product 4-hydroxynonenal (HNE) in 7-wk-old spontaneously hypertensive rat (SHR) hearts before hypertrophy development (Benderdour et al. J Biol Chem 278: 45154-45159, 2003). In this study, we used 7-, 15-, and 30-wk-old SHR and Sprague-Dawley (SD) rats with abdominal aortic coarctation. Compared with age-matched control Wistar-Kyoto (WKY) rats, SHR hearts showed a significant 25% decrease of mNADP+-ICDH activity, which preceded in time 1) the decline in its protein and mRNA expression levels (between 10% and 35%) and 2) the increase in hypertrophy markers. The chronic and persistent loss of mNADP+-ICDH activity in SHR was associated with enhanced tissue accumulation of HNE-mNADP+-ICDH and total HNE-protein adducts at all ages and contrasted with the profile of changes in the activity of other mitochondrial enzymes involved in antioxidant or energy metabolism. Two-way ANOVA of the data also revealed a significant effect of age on most parameters measured in SHR and WKY hearts. The mNADP+-ICDH activity, protein, and mRNA expression were reduced between 25% and 35% in coarctated SD rats and were normalized by treatment of SHR or coarctated SD rats with renin-angiotensin system inhibitors, which prevented or attenuated hypertrophy. Altogether, our data show that cardiac mNADP+-ICDH activity and expression are differentially and sequentially affected in hypertrophy development and, to a lesser extent, with aging. Decreased cardiac mNADP+-ICDH activity, which is attributed at least in part to HNE adduct formation, appears to be a relevant early and persistent marker of mitochondrial oxidative stress-related alterations in hypertrophy development. Potentially, this could also contribute to the aetiology of cardiomyopathy.  相似文献   

3.
The aldehyde 4-hydroxynonenal (HNE) is a major end-product of peroxidation of membrane n-6-polyunsaturated fatty acids. Primary reactants for HNE are the amino acids cysteine, histidine and lysine, and quantitatively, proteins and peptides represent the most important group of HNE-targeted biomolecules. HNE-protein adducts actually elude the metabolism of the aldehyde, particularly active in the liver, so that they can be easily detected in the hepatic tissue itself and in peripheral blood, and quantified by using immunoassays. Since consistently detectable in various liver disease processes and well related to the intensity of necro-inflammation, HNE-protein adducts may be considered a particularly good marker of lipid oxidation during liver injury. In addition, the demonstrated adduction reaction of HNE with important signalling proteins strongly suggests a pathogenetic role for this lipid aldehyde in the progression of liver diseases.  相似文献   

4.
Intracellular metabolism of 4-hydroxy-2-nonenal (HNE), a major product and mediator of oxidative stress and inflammation, is analyzed in resting and fMLP-stimulated human polymorphonuclear leukocytes (PMNL), where this compound is generated during activation of the respiratory burst. HNE consumption rate in PMNL is very low, if compared to other cell types (rat hepatocytes, rabbit fibroblasts), where HNE metabolism is always an important part of secondary antioxidative defense mechanisms. More than 98% of HNE metabolites are identified. The pattern of HNE intermediates is quite similar in stimulated and resting PMNL - except for higher water formation in resting PMNL - while the initial velocity of HNE degradation is somewhat higher in resting cells, 0.44 instead of 0.28 nmol/(min × 106 cells). The main products of HNE metabolism are 4-hydroxynonenoic acid (HNA), 1,4-dihydroxynonene (DHN) and the glutathione adducts with HNE, HNA, and DHN. Protein-bound HNE and water account for about 3-4% of the total HNE derivatives in stimulated cells, while in resting cells protein-bound HNE and water are 4% and 20%, respectively. Cysteinyl-glycine-HNE adduct and mercapturic acids contribute to about 5%.  相似文献   

5.
Mitochondrial dysfunction and accumulation of oxidative damage have been implicated to be the major factors of aging. However, data on age-related changes in activities of mitochondrial electron transport chain (ETC) complexes remain controversial and molecular mechanisms responsible for ETC dysfunction are still largely unknown. In this study, we examined the effect of aging on activities of ETC complexes and oxidative damage to proteins and lipids in cardiac mitochondria from adult (6-month-old), old (15-month-old) and senescent (26-month-old) rats. ETC complexes I-IV displayed different extent of inhibition with age. The most significant decline occurred in complex IV activity, whereas complex II activity was unchanged in old rats and was only slightly reduced in senescent rats. Compared to adult, old and senescent rat hearts had significantly higher levels of malondialdehyde, 4-hydroxynonenal (HNE) and dityrosine, while thiol group content was reduced. Despite marked increase in HNE content with age (25 and 76 % for 15- and 26-month-old rats, respectively) Western blot analysis revealed only few HNE-protein adducts. The present study suggests that non-uniform decline in activities of ETC complexes is due, at least in part, to mitochondrial oxidative damage; however, lipid peroxidation products appear to have a limited impact on enzyme functions.  相似文献   

6.
This study used monoclonal antibody specific for 4-hydroxynonenal (HNE)-histidine to evaluate immunohistochemical distribution of HNE-protein adducts in gastric mucosa biopsies of 52 peptic ulcer patients (all positive for H. pylori) and of 20 healthy volunteers (eight positive and 12 negative for H. pylori). HNE-modified proteins were present in glandular epithelium in all subjects, both patients with duodenal peptic ulcer and healthy subjects. Hence, the presence of HNE did not appear to be related to the presence of H. pylori. However, in patients with duodenal peptic ulcer accumulation of HNE-protein adducts was frequently observed also in nuclei, while in the control group such subcellular distribution of HNE was not observed at all. This study shows physiological presence of HNE in human gastric mucosa, but also suggests its role in pathology of gastric dysfunction in duodenal peptic ulcer patients manifested by accumulation of HNE-protein adducts in particular in nuclei of gastric glandular epithelium.  相似文献   

7.
We had previously shown that cyclosporin A (CsA) directly promoted the immortalization of Epstein-Barr virus (EBV)-infected human B cells (EBV-B cells) via an oxidative stress mechanism. 4-Hydroxynonenal (HNE) is a reactive end-product of lipid peroxidation. We hypothesized that HNE may mediate a direct oxidative stress-promoting effect of CsA on EBV-B cells. HNE-protein adducts in CsA-treated EBV-B cell extracts were assayed immunochemically using a Slot-Blot method. Cell proliferation was assayed by [(3)H]-thymidine incorporation. EBV oncogene latent membrane protein-1 (LMP1) expression was assayed by using PE-conjugated anti-LMP1 antibody in flow cytometry. We found that CsA at 500 ng ml(-1) and 1000 ng ml(-1) significantly increased the level of HNE-protein adducts in EBV-B cells over the control (arbitrary units +/- SE) by 251.3 +/- 7.5 to 361.3 +/- 9.7 and 342.7 +/- 10.7, respectively (p < 0.05, n = 3). EBV-B cells treated with a physiological concentration of HNE (1 microM) for 0.5 and 1 h and cultured for 2 and 4 weeks showed significantly increased [(3)H]-thymidine incorporation. EBV-B cells treated with HNE (1 microM) for 1 h and subsequently cultured for 2 and 4 weeks had a significantly higher ( > 2.0 times) LMP1-positive cell population over the control. In conclusion, in accordance with our previous findings, we show that CsA treatment of EBV-B cells results in increased production of the lipid peroxidation reactive end-product HNE that directly promotes EBV-B cell proliferation and LMP1 expression. This observation provides evidence for further understanding the mechanism of CsA-induced oxidative stress on EBV-related post-transplant lymphoproliferative disorder (PTLD).  相似文献   

8.
4-Hydroxy-2-nonenal (HNE) is one of the most reactive products of lipid peroxidation and has both cytotoxic and genotoxic effects in cells. Several enzymatic pathways have been reported to detoxify HNE, including conjugation by glutathione-S-transferases (GSTs). Removal of the resulting HNE-glutathione conjugate (HNE-SG) by an efflux transporter may be required for complete detoxification. We investigated the effect of expression of GSTM1 and/or the ABC efflux transporter protein, multidrug-resistance protein-1 (MRP1), on HNE-induced cellular toxicity. Stably transfected MCF7 cell lines were used to examine the effect of GSTM1 and/or MRP1 expression on HNE-induced cytotoxicity, GSH depletion, and HNE-protein adduct formation. Co-expression in the MCF7 cell line of GSTM1 with MRP1 resulted in a 2.3-fold sensitization to HNE cytotoxicity (0.44-fold IC(50) value relative to control) rather than the expected protection. Expression of either GSTM1 or MRP1 alone also resulted in slight sensitization to HNE cytotoxicity (0.79-fold and 0.71-fold decreases in IC(50) values, respectively). Co-expression of GSTM1 and MRP1 strongly enhanced the formation of HNE-protein adducts relative to the non-expressing control cell line, whereas expression of either MRP1 alone or GSTM1 alone yielded similarly low levels of HNE-protein adducts to that of the control cell line. Glutathione (GSH) levels were reduced by 10-20% in either the control cell line or the MCF7/GSTM1 cell line with the same HNE exposure for 60min. However, HNE induced >80% depletion of GSH in cells expressing MRP1 alone. Co-expression of both MRP1 and GSTM1 caused slightly greater GSH depletion, consistent with the greater protein adduct formation and cytotoxicity in this cell line. Since expression of GSTM1 or MRP1 alone did not strongly sensitize cells to HNE, or result in greater HNE-protein adducts than in the control cell line, these results indicate that MRP1 and GSTM1 collaborate to enhance HNE-protein adduct formation and HNE cytotoxicity, facilitated by GSH depletion mediated by both MRP1 and GSTM1.  相似文献   

9.
This study used monoclonal antibody specific for 4-hydroxynonenal (HNE)-histidine to evaluate immunohistochemical distribution of HNE–protein adducts in gastric mucosa biopsies of 52 peptic ulcer patients (all positive for H. pylori) and of 20 healthy volunteers (eight positive and 12 negative for H. pylori). HNE-modified proteins were present in glandular epithelium in all subjects, both patients with duodenal peptic ulcer and healthy subjects. Hence, the presence of HNE did not appear to be related to the presence of H. pylori. However, in patients with duodenal peptic ulcer accumulation of HNE-protein adducts was frequently observed also in nuclei, while in the control group such subcellular distribution of HNE was not observed at all. This study shows physiological presence of HNE in human gastric mucosa, but also suggests its role in pathology of gastric dysfunction in duodenal peptic ulcer patients manifested by accumulation of HNE-protein adducts in particular in nuclei of gastric glandular epithelium.  相似文献   

10.
《Free radical research》2013,47(12):1472-1481
Even though reactive oxygen species (ROS) have been implicated in SLE pathogenesis, the contributory role of ROS, especially the consequences of oxidative modification of proteins by lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) in eliciting an autoimmune response and disease pathogenesis remains largely unexplored. MRL/lpr mice, a widely used model for SLE, spontaneously develop a condition similar to human SLE, whereas MRL+/+ mice with the same MRL background, show much slower onset of SLE. To assess if the differences in the onset of SLE in the two substrains could partly be due to differential expression of LPDAs and to provide evidence for the role of LPDA-modified proteins in SLE pathogenesis, we determined the serum levels of MDA-/HNE-protein adducts, anti-MDA-/HNE-protein adduct antibodies, MDA-/HNE-protein adduct specific immune complexes, and various autoantibodies in 6-, 12- and 18-week old mice of both substrains. The results show age-related increases in the formation of MDA-/HNE-protein adducts, their corresponding antibodies and MDA-/HNE-specific immune complexes, but MRL/lpr mice showed greater and more accelerated response. Interestingly, a highly positive correlation between increased anti-MDA-/HNE-protein adduct antibodies and autoantibodies was observed. More importantly, we further observed that HNE-MSA caused significant inhibition in antinuclear antibodies (ANA) binding to nuclear antigens. These findings suggest that LPDA-modified proteins could be important sources of autoantibodies and CICs in these mice, and thus contribute to autoimmune disease pathogenesis. The observed differential responses to LPDAs in MRL/lpr and MRL+/+ mice may, in part, be responsible for accelerated and delayed onset of the disease, respectively.  相似文献   

11.
Highly reactive aldehyde 4-hydroxynonenal (HNE) is the final product of lipid peroxidation, known as a second messenger of free radicals and a signaling molecule. It forms protein conjugates involved in pathology of various diseases. To determine cellular HNE-protein conjugates we developed indirect ELISA based on well-known, monoclonal antibody against HNE-histidine (HNE-His) adducts. The method was calibrated using HNE-albumin conjugates as standards (R2 = 0.999) and validated on human osteosarcoma cell cultures (HOS). The ELISA showed good sensitivity (8.1 pmol HNE-His/mg of protein), precision ( ± 8% intra-assay and ± 12% inter-assay) and spiking recovery ( ± 9%). The assay revealed 60-fold increase of cellular HNE-His adducts upon copper-induced lipid peroxidation of HOS. The ELISA matched HNE-immunocytochemistry of HNE-treated HOS cells and quantified the increase of cellular HNE-His conjugates in parallel to the decrease of free HNE in culture medium. The ELISA was developed as ELISA Stress for severe lipid peroxidation and ELISA Fine for studies on HNE physiology.  相似文献   

12.
4-hydroxynonenal (HNE) is a highly toxic product of lipid peroxidation (LPO). Its role in the inhibition of cytochrome c oxidase activity and oxidative modifications of mitochondrial lipids and proteins were investigated. The exposure of mitochondria isolated from rat heart to HNE resulted in a time- and concentration-dependent inhibition of cytochrome c oxidase activity with an IC50 value of 8.3 +/- 1.0 microM. Immunoprecipitation-Western blot analysis showed the formation of HNE adducts with cytochrome c oxidase subunit I. The loss of cytochrome c oxidase activity was also accompanied by reduced thiol group content and increased HNE-lysine fluorescence. Furthermore, there was a marked increase in conjugated diene formation indicating LPO induction by HNE. Fluorescence measurements revealed the formation of bityrosines and increased surface hydrophobicity of HNE-treated mitochondrial membranes. Superoxide dismutase + catalase and the HO* radical scavenger mannitol partially prevented inhibition of cytochrome c oxidase activity and formation of bityrosines. These findings suggest that HNE induces formation of reactive oxygen species and its damaging effect on mitochondria involves both formation of HNE-protein adducts and oxidation of membrane lipids and proteins by free radicals.  相似文献   

13.
《Free radical research》2013,47(10):1233-1238
Abstract

The lipid peroxidation product 4-hydroxynonenal (HNE) is a biomarker of oxidative stress which is essentially involved in the pathophysiology of many diseases. The analysis of HNE is challenging because this aldehyde is extremely reactive and thus unstable. Hence, we adopted a gas chromatography–mass spectrometry (GC–MS) method based on derivatization of HNE with pentafluorobenzylhydroxylamine–HCl followed by trimethylsilylation to trimethylsilyl ethers. Ions representative for a negative ion chemical ionization mode were recorded at m/z = 152 for HNE and at m/z = 162 for the deuterated analogon (HNE-d11) as internal standard. This excellent stable and precise GC–MS method was carefully validated for HNE, and showed good linearity (r2 = 0.998), and high specificity and sensitivity. Within-day precisions were 4.4–6.1% and between-day precisions were 5.2–10.2%. Accuracies were between 99% and 104% for the whole calibration range (2.5–250 nmol/L) of HNE.

To examine the versatility of this modified GC–MS method, we analyzed HNE in ethylenediaminetetraacetic acid (EDTA) plasma in a well-defined collective of migraine patients; recently published. The results underline our former observations that women with migraine are afflicted with increased levels of HNE. Patients with thyroidal dysfunction showed no significant HNE alterations. This was confirmed by normal HNE EDTA plasma levels in hyper- und hypothyroid Sprague-Dawley rats.

Taken together, the GC–MS method presented herein is of excellent quality to record oxidative stress-related bioactive HNE levels. This is important for a reorientation of oxidative stress analytics in other human diseases first of atherosclerosis and cancer.  相似文献   

14.
A promising approach to study lipid peroxidation pathology is antibodies recognizing aldehydes which react with and became bound to amino acid side chains of proteins. We present in this study the characterization of several monoclonal antibodies which recognize 4-hydroxynonenal (HNE) modified proteins. Six out of 20 antibodies recognizing HNE modified BSA were able to detect HNE-protein adducts in peroxidized liver microsomes. Two of these antibodies were selected and characterized. Both antibodies could also detect HNE-protein adducts in oxidized low density lipoprotein. They exhibit no detectable cross reaction with proteins modified by malonaldehyde, nonanal, nonenal and 4-hydroxyhexenal. Protein bound 4-hydroxyoctenal and 4-hydroxydecenal were recognized to some extent. Further characterization revealed that the two antibodies are highly selective for HNE bound to histidine with only some cross reaction to HNE bound to lysine and cysteine. Preliminary quantitative ELISA-analysis showed that oxidized microsomes and oxidized LDL contain 12 nmol and 3 nmol HNE-histidine per mg protein respectively.  相似文献   

15.
16.
Reactive electrophiles generated by lipid peroxidation are thought to contribute to cardiovascular disease and other oxidative stress-related pathologies by covalently modifying proteins and affecting critical protein functions. The difficulty of capturing and analyzing the relatively small fraction of modified proteins complicates identification of the protein targets of lipid electrophiles. We recently synthesized a biotin-modified linoleoylglycerylphosphatidylcholine probe called PLPBSO ( Tallman et al. Chem. Res. Toxicol. 2007, 20, 227-234 ), which forms typical linoleate oxidation products and covalent adducts with model peptides and proteins. Supplementation of human plasma with PLPBSO followed by free radical oxidation resulted in covalent adduction of PLPBSO to plasma proteins, which were isolated with streptavidin and identified by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Among the most highly modified proteins was apolipoprotein A1 (ApoA1), which is the core component of high density lipoprotein (HDL). ApoA1 phospholipid adduct sites were mapped by LC-MS-MS of tryptic peptides following mild base hydrolysis to release esterified phospholipid adducts. Several carboxylated adducts formed from phospholipid-esterified 9,12-dioxo-10( E)-dodecenoic acid (KODA), 9-hydroxy, 12-oxo-10( E)-dodecenoic acid (HODA), 7-oxoheptanoic acid, 8-oxooctanoic acid, and 9-oxononanoic acid were identified. Free radical oxidations of isolated HDL also generated adducts with 4-hydroxynonenal (HNE) and other noncarboxylated electrophiles, but these were only sporadically identified in the PLPBSO-adducted ApoA1, suggesting a low stoichiometry of modification in the phospholipid-adducted protein. Both phospholipid electrophiles and HNE adducted His162, which resides in an ApoA1 domain involved in the activation of Lecithin-cholesterol acyltransferase and maturation of the HDL particle. ApoA1 lipid electrophile adducts may affect protein functions and provide useful biomarkers for oxidative stress.  相似文献   

17.
Although 4-hydroxy-2-nonenal (HNE, a product of lipid peroxidation) is a major cause of oxidative damage inside skeletal muscles, the exact proteins modified by HNE are unknown. We used two-dimensional electrophoresis, immunoblotting, and mass spectrometry to identify selective proteins targeted by HNE inside the diaphragm of rats under two conditions: severe sepsis [induced by E. coli lipopolysaccharides (LPS)] and during strenuous muscle contractions elicited by severe inspiratory resistive loading (IRL). Diaphragm HNE-protein adduct formation (detected with a polyclonal antibody) increased significantly after 1 and 3 h of LPS injection with a return to baseline values thereafter. Similarly, HNE-protein adduct formation inside the diaphragm rose significantly after 6 but not 3 h of IRL. Mass spectrometry analysis of HNE-modified proteins revealed enolase 3b, aldolase and triosephosphate isomerase 1, creatine kinase, carbonic anyhdrase III, aconitase 2, dihydrolipoamide dehydrogenase, and electron transfer flavoprotein-beta. Measurements of in vitro enolase activity in the presence of pure HNE revealed that HNE significantly attenuated enolase activity in a dose-dependent fashion, suggesting that HNE-derived modifications have inhibitory effects on enzyme activity. We conclude that lipid peroxidation products may inhibit muscle contractile performance through selective targeting of enzymes involved in glycolysis, energy production as well as CO(2) hydration.  相似文献   

18.
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.  相似文献   

19.
The oxidative stress hypothesis predicts that the accumulation of oxidative damage to a variety of macromolecules is the molecular trigger driving the process of aging. Although an inverse relationship between oxidative damage and lifespan has been established in several different species, the precise relationship between oxidative damage and aging is not fully understood. Drosophila melanogaster is a favored model organism for aging research. Environmental interventions such as ambient temperature and calorie restriction can alter adult lifespan to provide an excellent system to examine the relationship between oxidative damage, aging and lifespan. We have developed an enzyme-linked immunosorbent assay (ELISA) using commercially available reagents for measuring 4-hydroxy-2-nonenal (HNE) in proteins, a marker for oxidative damage to lipids, and present data in flies to show that HNE adducts accumulate in an age-dependent manner. With immunohistology, we also find the primary site of HNE accumulation is the pericerebral fat body, where induction of dFOXO was recently shown to retard aging. When subjected to environmental interventions that shorten lifespan, such as elevated ambient temperature, the chronological accumulation of HNE adduct is accelerated. Conversely, interventions that extend lifespan, such as lower ambient temperature or low calorie diets, slow the accumulation of HNE adduct. These studies associate damage from lipid peroxidation with aging and lifespan in Drosophila and show that calorie restriction in flies, as in mammals, slows the accumulation of lipid related oxidative damage.  相似文献   

20.
There is growing evidence that vascular arginase plays a role in pathophysiology of vascular diseases. We recently reported high arginase activity/expression in young adult hypertensive spontaneously hypertensive rats (SHR). The aim of the present study was to characterize the time course of arginase pathway abnormalities in SHR and to explore the contributing role of hemodynamics and inflammation. Experiments were conducted on 5, 10, 19 and 26-week-old SHR and their age-matched control Wistar Kyoto (WKY) rats. Arginase activity as well as expression of arginase I, arginase II, endothelial and inducible NOS were determined in aortic tissue extracts. Levels of L-arginine, NO catabolites and IL-6 (a marker of inflammation) were measured in plasma. Arginase activity/expression was also measured in 10-week-old SHR previously treated with hydralazine (20 mg/kg/day, per os, for 5 weeks). As compared to WKY, SHR exhibited high vascular arginase I and II expression from prehypertensive to established stages of hypertension. However, a mismatch between expression and activity was observed at the prehypertensive stage. Arginase expression was not related either to plasma IL-6 levels or to expression of NOS. Prevention of hypertension by hydralazine significantly blunted arginase upregulation and restored arginase activity. Importantly, arginase activity and blood pressure (BP) correlated in SHR. In conclusion, our results demonstrate that arginase upregulation precedes blood pressure rising and identify elevated blood pressure as a contributing factor of arginase dysregulation in genetic hypertension. They also demonstrated a close relationship between arginase activity and BP, thus making arginase a promising target for antihypertensive therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号