首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study analyzes 9 years of eddy‐covariance (EC) data carried out in a Pacific Northwest Douglas‐fir (Pseudotsuga menzesii) forest (58‐year old in 2007) on the east coast of Vancouver Island, Canada, and characterizes the seasonal and interannual variability in net ecosystem productivity (NEP), gross primary productivity (GPP), and ecosystem respiration (Re) and primary climatic controls on these fluxes. The annual values (± SD) of NEP, GPP and Re were 357 ± 51, 2124 ± 125, and 1767 ± 146 g C m?2 yr?1, respectively, with ranges of 267–410, 1592–2338, and 1642–2071 g C m?2 yr?1, respectively. Spring to early summer (March–June) accounted for more than 80% of annual NEP while late spring to early autumn (May–August) was mainly responsible for its interannual variability (~80%). The major drivers of interannual variability in annual carbon (C) fluxes were annual and spring mean air temperatures (Ta) and water deficiency during late summer and autumn (July–October) when this Douglas‐fir forest growth was often water‐limited. Photosynthetically active radiation (Q), and the combination of Q and soil water content (θ) explained 85% and 91% of the variance of monthly GPP, respectively; and 91% and 96% of the variance of monthly Re was explained by Ta and the combination of Ta and θ, respectively. Annual net C sequestration was high during optimally warm and normal precipitation years, but low in unusually warm or severely dry years. Excluding 1998 and 1999, the 2 years strongly affected by an El Niño/La Niña cycle, annual NEP significantly decreased with increasing annual mean Ta. Annual NEP will likely decrease whereas both annual GPP and Re will likely increase if the future climate at the site follows a trend similar to that of the past 40 years.  相似文献   

2.
3.
The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.  相似文献   

4.
Budgets for chlorophyll a and selected degradation products were constructed during summer stratification in 1984 and 1985 in two lakes. In Paul Lake, the reference ecosystem, pigment sedimentation showed no significant interannual differences. In Tuesday Lake, fish manipulations in May 1985 changed the zooplankton from an assemblage of Bosmina and small cyclopoids to one of large cladoceran grazers. Sedimentation of pigments, especially the grazing indicator pheophorbide a, increased significantly as the grazer assemblage changed. Mean grazer size was positively related to pheophorbide deposition rate in both lakes. Results of this whole-lake experiment indicate that major changes in lake food webs alter pigment deposition rates.  相似文献   

5.
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem’s CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 μmol CO2 m−2 s−1 [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20°C soil temperature, Re20, was −10.9 μmol CO2 m−2 s−1 (CV, 27.3). Re20 was positively correlated with vegetation biomass. GPPmax was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.  相似文献   

6.
7.
Periphyton (epilithon) gross primary production (GPP) was estimated using the DCMU-fluorescence method in the Yenisei River. In the unshaded littoral zone, chlorophyll a concentration (Chl a) and GPP value varied from 0.83 to 973.74 mg m−2and 2–304,425 O2 m−2 day−1 (0.64–95 133 mg C m−2 day−1), respectively. Positive significant correlation (r = 0.8) between daily GPP and periphyton Chl a was found. Average ratio GPP:Chl a for periphyton was 36.36 mg C mg Chl a m−2 day−1. The obtained GPP values for the Yenisei River have a high significant correlation with values predicted by a conventional empirical model for stream periphyton. We concluded that the DCMU-fluorescence method can be successfully used for measuring of gross primary production of stream phytoperiphyton at least as another useful tool for such studies.  相似文献   

8.
We present data from a long time-series study to describe the factors that control phytoplankton population densities and biomass in the coastal waters of Oman. Surface temperature, salinity, nutrients, dissolved oxygen, chlorophyll a (Chl a), and phytoplankton and zooplankton abundance of sea water were measured as far as possible from February 2004 through February 2006, at two stations along the southern coast of the Gulf of Oman. The highest concentrations of Chl a (3 mg m−3) were recorded during the southwest monsoon (SWM) when upwelling is active along the coast of Oman. However, results from our study reveal that the timing and the amplitude of the seasonal peak of Chl a exhibited interannual variability, which might be attributed to interannual differences in the seasonal cycles of nutrients caused either by coastal upwelling or by cyclonic eddy activity. Monthly variability of SST and concentrations of dissolved nitrate, nitrite, phosphate, and silicate together explained about 90% of the seasonal changes of Chl a in the coastal ecosystem of the Gulf of Oman. Phytoplankton communities of the coastal waters of Oman were dominated by diatoms for most part of the year, but for a short period in summer, dinoflagellates were dominant.  相似文献   

9.
The influence of functional group specific production and respiration patterns on a lake''s metabolic balance remains poorly investigated to date compared to whole-system estimates of metabolism. We employed a summed component ecosystem approach for assessing lake-wide and functional group-specific metabolism (gross primary production (GPP) and respiration (R)) in shallow and eutrophic Lake Võrtsjärv in central Estonia during three years. Eleven functional groups were considered: piscivorous and benthivorous fish; phyto-, bacterio-, proto- and metazooplankton; benthic macroinvertebrates, bacteria and ciliates; macrophytes and their associated epiphytes. Metabolism of these groups was assessed by allometric equations coupled with daily records of temperature and hydrology of the lake and measurements of food web functional groups biomass. Results revealed that heterotrophy dominated most of the year, with a short autotrophic period observed in late spring. Most of the metabolism of the lake could be attributed to planktonic functional groups, with phytoplankton contributing the highest share (90% of GPP and 43% of R). A surge of protozooplankton and bacterioplankton populations forming the microbial loop caused the shift from auto- to heterotrophy in midsummer. Conversely, the benthic functional groups had overall a very small contribution to lake metabolism. We validated our ecosystem approach by comparing the GPP and R with those calculated from O2 measurements in the lake. Our findings are also in line with earlier productivity studies made with 14C or chlorophyll a (chl-a) based equations. Ideally, the ecosystem approach should be combined with diel O2 approach for investigating critical periods of metabolism shifts caused by dynamics in food-web processes.  相似文献   

10.
Hurricane disturbances have profound impacts on ecosystem structure and function, yet their effects on ecosystem CO2 exchange have not been reported. In September 2004, our research site on a fire‐regenerated scrub‐oak ecosystem in central Florida was struck by Hurricane Frances with sustained winds of 113 km h−1 and wind gusts as high as 152 km h−1. We quantified the hurricane damage on this ecosystem resulting from defoliation: we measured net ecosystem CO2 exchange, the damage and recovery of leaf area, and determined whether growth in elevated carbon dioxide concentration in the atmosphere (Ca) altered this disturbance. The hurricane decreased leaf area index (LAI) by 21%, which was equal to 60% of seasonal variation in canopy growth during the previous 3 years, but stem damage was negligible. The reduction in LAI led to a 22% decline in gross primary production (GPP) and a 25% decline in ecosystem respiration (Re). The compensatory declines in GPP and Re resulted in no significant change in net ecosystem production (NEP). Refoliation began within a month after the hurricane, although this period was out of phase with the regular foliation period, and recovered 20% of the defoliation loss within 2.5 months. Full recovery of LAI, ecosystem CO2 assimilation, and ecosystem respiration did not occur until the next growing season. Plants exposed to elevated Ca did not sustain greater damage, nor did they recover faster than plants grown under ambient Ca. Thus, our results indicate that hurricanes capable of causing significant defoliation with negligible damage to stems have negligible effects on NEP under current or future CO2‐enriched environment.  相似文献   

11.
12.
Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may change ecosystem C‐sink/‐source properties. We studied effects of increased background [O3] (up to [ambient] × 2) and increased N deposition (up to +50 kg ha?1 a?1) on mature, subalpine grassland during the third treatment year. During 10 days and 13 nights, distributed evenly over the growth period of 2006, we measured ecosystem‐level CO2 exchange using a static cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared with differences in soil organic C after 5 years of treatment. The high [O3] had no effect on aboveground dry matter productivity (DM), but seasonal mean rates of both Reco and GPP decreased ca. 8%. NEP indicated an unaltered growing season CO2–C balance. High N treatment, with a +31% increase in DM, mean Reco increased ca. 3%, but GPP decreased ca. 4%. Consequently, seasonal NEP yielded a 53.9 g C m?2 (±22.05) C loss compared with control. Independent of treatment, we observed a negative NEP of 146.4 g C m?2 (±15.3). Carbon loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one‐third of that loss.  相似文献   

13.
Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem‐scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear‐water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high‐frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for >4 weeks even though thermal stratification re‐established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm‐induced effects, such as inputs of terrestrial materials by increased catchment run‐off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear‐water lakes.  相似文献   

14.
Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.  相似文献   

15.
Respiratory CO2 release from inland waters is a major process in the global carbon cycle, retaining more than half of the carbon flux from terrestrial sources that otherwise would reach the sea. The strongly lake type-specific balance between primary production and respiration determines whether a lake acts regionally as a net sink or source of CO2. This study presents two-year (2009, 2010) results of high-frequency metabolism measurements in the large and shallow polymictic eutrophic Lake V?rtsj?rv (area 270?km2; mean depth 2.8?m). We estimated the net ecosystem production (NEP), community respiration (R) and gross primary production (GPP) from continuous measurements of oxygen, irradiance, wind and water temperature. A sinusoidal model fitted to the calculated metabolic rates showed the prevalence of net autotrophy (mean GPP:R?>?1) from early spring until August/September, whereas during the rest of the year heterotrophy (mean GPP:R?2 neutral on an annual basis. Community respiration lagged behind GPP by approximately 2?weeks, which could be explained by the bulk of the phytoplankton biomass accounted for by filamentous cyanobacteria that are considered mostly inedible to zooplankton, and the seasonally increasing role of sediment resuspension. In the warmer year 2010, the seasonal peaks of GPP, R and NEP were synchronously shifted nearly 1?month earlier compared with 2009. The strong stimulating effect of temperature on both GPP and R and its negative effect on NEP revealed by the multiple regression analysis suggests increasing metabolic rates and increasing heterotrophy in this lake type in a warmer climate.  相似文献   

16.
The pulsing of river discharge affects biodiversity and productivity of whole river–floodplain ecosystems, triggering the transport, storage and processing of carbon. In this study we investigate the short-term changes in water chemistry and net pelagic metabolism (NEP) in two floodplain lakes in response to a flood pulse. The two oxbow lakes investigated in the floodplain of the Mediterranean Ebro River (NE Spain) showed a clear temporal shift in their metabolic balance, controlled by the river discharge and associated changes in water physical and chemical characteristics. Water chemistry (turbidity, water organic matter, chlorophyll a and nutrients concentration) returned to pre-flood values after 4 days, highlighting the resilience of the ecosystem to flood pulses. Lake NEP was depressed before and during floods to a minimum of −34 mg O2 m−3 h−1, and increased after the flood pulse to a maximum of +463 mg O2 m−3 h−1. The phytoplankton assemblage showed before and after floods a replacement of autotrophic species (e.g. Chlorophyceans) by mixotrophic organisms (e.g. Cryptophyceans, Euglenoids). A linear mixed effects model identified abiotic factors, particularly temperature and river discharge, as significant predictors of the net aquatic metabolism and community respiration during flood conditions. Our results suggest that the role of the Ebro floodplain lakes as sources or sinks of C is complex and relative to the time scale investigated, depending strongly on the river discharge dynamics and the transport of limiting nutrients (phosphorus).  相似文献   

17.
Clein  J S  McGuire  A D  Zhang  X  Kicklighter  D W  Melillo  J M  Wofsy  S C  Jarvis  P G  Massheder  J M 《Plant and Soil》2002,242(1):15-32
The role of carbon (C) and nitrogen (N) interactions on sequestration of atmospheric CO2 in black spruce ecosystems across North America was evaluated with the Terrestrial Ecosystem Model (TEM) by applying parameterizations of the model in which C–N dynamics were either coupled or uncoupled. First, the performance of the parameterizations, which were developed for the dynamics of black spruce ecosystems at the Bonanza Creek Long-Term Ecological Research site in Alaska, were evaluated by simulating C dynamics at eddy correlation tower sites in the Boreal Ecosystem Atmosphere Study (BOREAS) for black spruce ecosystems in the northern study area (northern site) and the southern study area (southern site) with local climate data. We compared simulated monthly growing season (May to September) estimates of gross primary production (GPP), total ecosystem respiration (RESP), and net ecosystem production (NEP) from 1994 to 1997 to available field-based estimates at both sites. At the northern site, monthly growing season estimates of GPP and RESP for the coupled and uncoupled simulations were highly correlated with the field-based estimates (coupled: R 2= 0.77, 0.88 for GPP and RESP; uncoupled: R 2 = 0.67, 0.92 for GPP and RESP). Although the simulated seasonal pattern of NEP generally matched the field-based data, the correlations between field-based and simulated monthly growing season NEP were lower (R 2 = 0.40, 0.00 for coupled and uncoupled simulations, respectively) in comparison to the correlations between field-based and simulated GPP and RESP. The annual NEP simulated by the coupled parameterization fell within the uncertainty of field-based estimates in two of three years. On the other hand, annual NEP simulated by the uncoupled parameterization only fell within the field-based uncertainty in one of three years. At the southern site, simulated NEP generally matched field-based NEP estimates, and the correlation between monthly growing season field-based and simulated NEP (R 2 = 0.36, 0.20 for coupled and uncoupled simulations, respectively) was similar to the correlations at the northern site. To evaluate the role of N dynamics in C balance of black spruce ecosystems across North America, we simulated historical and projected C dynamics from 1900 to 2100 with a global-based climatology at 0.5° resolution (latitude × longitude) with both the coupled and uncoupled parameterizations of TEM. From analyses at the northern site, several consistent patterns emerge. There was greater inter-annual variability in net primary production (NPP) simulated by the uncoupled parameterization as compared to the coupled parameterization, which led to substantial differences in inter-annual variability in NEP between the parameterizations. The divergence between NPP and heterotrophic respiration was greater in the uncoupled simulation, resulting in more C sequestration during the projected period. These responses were the result of fundamentally different responses of the coupled and uncoupled parameterizations to changes in CO2 and climate.  相似文献   

18.
19.
We compared phytoplankton and phytobenthos pigment strategies in 17 shallow lakes and ponds from northern Canada and Alaska, sampled during mid to late summer. Benthic chlorophyll a concentrations (8–261 mg m−2) greatly exceeded those of the phytoplankton (0.008–1.4 mg m−2) in all sites. Cyanobacteria dominated the phytobenthos, while green algae and fucoxanthin-groups characterized the plankton. Both communities had higher photoprotection in cold, UV-transparent, high latitude waters. Phytoplankton had higher concentrations of photoprotective carotenoids per unit chlorophyll a than the phytobenthos. The planktonic photoprotective pigments were positively correlated with UV-penetration, and inversely correlated with temperature and coloured dissolved organic matter. A partial redundancy analysis showed that the benthic pigments were related to latitude, area and temperature. The UV-screening compound scytonemin occurred in high concentrations in the phytobenthos and was inversely related to temperature, while benthic carotenoids per unit chlorophyll a showed much lower variability among sites. These differing pigment strategies imply divergent responses to environmental change between the phytobenthos and phytoplankton in high latitude lakes.  相似文献   

20.
Numerous studies have demonstrated alternative regimes in shallow lake ecosystems around the world, with one state dominated by submerged macrophytes and the other by phytoplankton. However, the stability of each regime, and thresholds at which lakes shift to the alternative regime, are poorly known. We used a cross-sectional analysis of 72 shallow lakes located in prairie and parkland areas of Minnesota, USA, during 2005 and 2006 to assess the occurrence of alternative regimes and shifts between them. Cluster analysis revealed two distinct groups of lakes characterized not only by different macrophyte abundance and chlorophyll a levels but also by different total phosphorus–chlorophyll a relationships. Thirty-nine lakes were macrophyte- and 23 lakes phytoplankton-dominated in both years, whereas 10 sites shifted sharply between those regimes. We failed to detect a universal shifting threshold in terms of chlorophyll a or total phosphorus. However, 95% of the lakes with chlorophyll a concentrations less than 22 μg l−1 were in a clear-water regime, whereas 95% of the lakes with chlorophyll a higher than 31 μg l−1 were in a turbid regime. Total phosphorus less than 62 μg l−1 was an accurate predictor of lakes in a stable clear-water regime, whereas a large change in biomass of planktivores and benthivores between years was the only variable weakly related to regime shifts. Our results support the theoretical prediction that regime thresholds vary among lakes. We recommend that lake managers focus on improving resilience of clear regimes in shallow lakes by reducing nutrient loading, rather than attempting to identify and manage complex triggers of regime shifts. Author contributions KDZ, MAH, BRH, and MLK all contributed to the design of the study, performed the research, analyzed data, and helped write the article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号