首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.  相似文献   

3.
Cyclin D genes regulate the cell cycle, growth and differentiation in response to intercellular signaling. While the promoters of vertebrate cyclin D genes have been analyzed, the cis-regulatory sequences across an entire cyclin D locus have not. Doing so would increase understanding of how cyclin D genes respond to the regulatory states established by developmental gene regulatory networks, linking cell cycle and growth control to the ontogenetic program. Therefore, we conducted a cis-regulatory analysis on the cyclin D gene, SpcycD, of the sea urchin, Strongylocentrotus purpuratus, during embryogenesis, identifying upstream and intronic sequences, located within six defined regions bearing one or more cis-regulatory modules each.  相似文献   

4.
Morphological evolution is driven both by coding sequence variation and by changes in regulatory sequences. However, how cis-regulatory modules (CRMs) evolve to generate entirely novel expression domains is largely unknown. Here, we reconstruct the evolutionary history of a lens enhancer located within a CRM that not only predates the lens, a vertebrate innovation, but bilaterian animals in general. Alignments of orthologous sequences from different deuterostomes sub-divide the CRM into a deeply conserved core and a more divergent flanking region. We demonstrate that all deuterostome flanking regions, including invertebrate sequences, activate gene expression in the zebrafish lens through the same ancient cluster of activator sites. However, levels of gene expression vary between species due to the presence of repressor motifs in flanking region and core. These repressor motifs are responsible for the relatively weak enhancer activity of tetrapod flanking regions. Ray-finned fish, however, have gained two additional lineage-specific activator motifs which in combination with the ancient cluster of activators and the core constitute a potent lens enhancer. The exploitation and modification of existing regulatory potential in flanking regions but not in the highly conserved core might represent a more general model for the emergence of novel regulatory functions in complex CRMs.  相似文献   

5.
6.
The strictly regulated expression of most pleiotropic developmental control genes is critically dependent on the activity of long-range cis-regulatory elements. This was revealed by the identification of individuals with a genetic condition lacking coding-region mutations in the gene commonly associated with the disease but having a variety of nearby chromosomal abnormalities, collectively described as cis-ruption disease cases. The congenital eye malformation aniridia is caused by haploinsufficiency of the developmental regulator PAX6. We discovered a de novo point mutation in an ultraconserved cis-element located 150 kb downstream from PAX6 in an affected individual with intact coding region and chromosomal locus. The element SIMO acts as a strong enhancer in developing ocular structures. The mutation disrupts an autoregulatory PAX6 binding site, causing loss of enhancer activity, resulting in defective maintenance of PAX6 expression. These findings reveal a distinct regulatory mechanism for genetic disease by disruption of an autoregulatory feedback loop critical for maintenance of gene expression through development.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. Differences in the spatial expression of the proneural gene scute correlate with the positions of bristles in those species looked at so far. However, the examination of a number of genes encoding trans-regulatory factors, such as pannier, stripe, u-shaped, caupolican and wingless, indicates that they are expressed in conserved domains on the prospective notum. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera, and that many differences are likely to be due to changes in cis-regulatory sequences of scute. In contrast, in Anopheles gambiae, a basal species with no stereotyped bristle pattern, the expression patterns of pannier and wingless are not conserved, and expression of AgASH, the Anopheles proneural gene, does not correlate in a similar manner with the bristle pattern. We discuss the possibility that independently acting cis-regulatory sequences at the scute locus may have arisen in the lineage giving rise to cyclorraphous flies.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号