首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.  相似文献   

3.
TNF-α and insulin resistance: Summary and future prospects   总被引:4,自引:0,他引:4  
While the causes of obesity remain elusive, the relationship between obesity and insulin resistance is a well-established fact [1]. Insulin resistance is defined as a smaller than normal response to a certain dose of insulin, and contributes to several pathological problems of obese patients such as hyperlipidemia, arteriosclerosis and hypertension. Several pieces of evidence indicate that the cytokine tumor necrosis factor a (TNF-) is an important player in the state of insulin resistance observed during obesity. In this review we will try to summarize what is known about the function of TNF-a in insulin resistance during obesity and how TNF- interferes with insulin signaling.  相似文献   

4.
Thyroid hormone (TH) treatment exerts beneficial effects on the cardiovascular system: it lowers cholesterol and LDL levels and enhances cardiac contractile function. However, little is known about the effect of TH on vascular function or the functional role of TH receptors (TRs) in the regulation of vascular tone. We have investigated the contribution of TRs to vascular contractility in the heart. Among different TR subtype-specific knockout (KO) mice, vascular contraction was significantly enhanced in coronary arteries isolated from TRα KO compared with wild-type mice, while chronic TH treatment significantly attenuated coronary vascular contraction. We found that TRα is the predominant TR in mouse coronary smooth muscle cells (SMCs). Coronary SMCs isolated from TRα KO mice exhibited a significant decrease in K(+) channel activity, whereas TH treatment increased K(+) channel activity in a dose-dependent manner. These data suggest that TRα in SMCs has prominent effects on regulation of vascular tone and TH treatment helps decrease coronary vascular tone by increasing K(+) channel activity through TRα in SMCs.  相似文献   

5.
The ability of 485 fungal strains is studied for catalysis of the process of 7α, 15α-dihydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androstene-17-one), a key intermediate of the synthesis of physiologically active compounds. The ability for the formation of 3β, 7α, 15α-trihydroxy-5-androstene-17-one (7α, 15α-diOH-DHEA) was found for the first time for representatives of 12 genera, eight families, and six orders of ascomycetes, eight genera, four families, and one order of zygomycetes, one genus, one family, and one order of basidiomycetes, and four genera of mitosporic fungi. The most active strains are found among genera Acremonium, Gibberella, Fusarium, and Nigrospora. In the process of transformation of DHEA (2 g/l) by strains of Fusarium oxysporum VKM F-1600 and Gibberella zeae BKM F-2600, the molar yield was 63 and 68%, respectively. Application of the revealed active strains of microorganisms opens prospects for the efficient production of key intermediates of synthesis of modern medical preparations.  相似文献   

6.

Interferon-α genes were cloned from six breeds of three species of two genera (three Chinese native cattle breeds of yellow cattle, wild yak and HuanHu domestic yak, one European breed of Holstein cow, and two water buffalo breeds of FuAn water buffalo and FuZhong water buffalo) by direct PCR. The PCR products were directly inserted into the expression vector to be sequenced and expressed. Sequence analysis showed that IFN-α genes of six clones were composed of 498 nucleotides, encoding a mature polypeptide with 166 amino acids. Compared with the published BoIFN-α subtypes, the IFN-α gene of Holstein cow had only one point mutation with the BoIFN-αA subtype. The IFN-α gene of yellow cattle was similar to the BoIFN-αD subtype with amino acid identity of 97.0% and may be considered as a new subtype, namely, BoIFN-αD1. The other four IFN-α genes, cloned from wild yak and HuanHu domestic yak, FuAn water buffalo, and FuZhong water buffalo, represented four new subtypes, namely, BoIFN-αI, BoIFN-αJ, BuIFN-α1, and BuIFN-α2, respectively. Each of the six clones was expressed in E. coli with molecular weight of ~ 20kDa by SDS-PAGE and Western blot analyses. Antiviral activity assays showed that the six recombinant IFN-α (rIFN-α) all exhibited 1000 times higher antiviral activity in the MDBK/VSV cell line than in the CEF/VSV one. Moreover, the rIFN-αs could inhibit infectious bovine rhinotracheitis virus replication in the MDBK cell line using CPE inhibition method. The results suggested that rIFN-αs a potential agent for clinical application against virus diseases in cattle industry.  相似文献   

7.
Stress is a risk factor for several cardiovascular pathologies. PPARα holds a fundamental role in control of lipid homeostasis by directly regulating genes involved in fatty acid transport and oxidation. Importantly, PPARα agonists are effective in raising HDL-cholesterol and lowering triglycerides, properties that reduce the risk for cardiovascular diseases. This study investigated the role of stress and adrenergic receptor (AR)-related pathways in PPARα and HNF4α regulation and signaling in mice following repeated restraint stress or treatment with AR-antagonists administered prior to stress to block AR-linked pathways. Repeated restraint stress up-regulated Pparα and its target genes in the liver, including Acox, Acot1, Acot4, Cyp4a10, Cyp4a14 and Lipin2, an effect that was highly correlated with Hnf4α. In vitro studies using primary hepatocyte cultures treated with epinephrine or AR-agonists confirmed that hepatic AR/cAMP/PKA/CREB- and JNK-linked pathways are involved in PPARα and HNF4α regulation. Notably, restraint stress, independent of PPARα, suppressed plasma triglyceride levels. This stress-induced effect could be attributed in part to hormone sensitive lipase activation in the white adipose tissue, which was not prevented by the increased levels of perilipin. Overall, this study identifies a mechanistic basis for the modification of lipid homeostasis following stress and potentially indicates novel roles for PPARα and HNF4α in stress-induced lipid metabolism.  相似文献   

8.
9.
10.
The tumour suppressor LKB1 plays a critical role in cell proliferation, polarity and energy metabolism. LKB1 is a Ser/Thr protein kinase that is associated with STRAD and MO25 in vivo. Here, we describe the individual expression of the three components of the LKB1 complex using monocistronic vectors and their co-expression using tricistronic vectors that were constructed from monocistronic vectors using a fully modular cloning approach. The data show that among the three individually expressed components of the LKB1 complex, only MO25α can be expressed in soluble form, whereas the other two, LKB1 and STRADα are found almost exclusively in inclusion bodies. However, using the tricistronic vector system, functional LKB1-MO25α-STRADα complex was expressed and purified from soluble extracts by sequential immobilized-metal affinity and heparin chromatography, as shown by Western blotting using specific antibodies. In size exclusion chromatography, MO25α and STRADα exactly co-elute with LKB1 with an apparent molecular weight of the heterotrimeric complex of 160 kDa. The specific activity in the peak fraction of the size exclusion chromatography was 250 U/mg at approximately 25% purity. As shown by autoradiography, LKB1 and STRADα, both strongly autophosphorylate in vitro. Moreover, recombinant LKB1 complex activates AMPK by phosphorylation of the α-subunit at the Thr-172 site as shown (i) by Western blotting using phospho-specific antibodies after LKB1-dependent phosphorylation, (ii) by LKB1-dependent incorporation of radioactive phosphate into the α-subunit of kinase dead AMPK heterotrimer, and (iii) by activity determination of AMPK. Functional mammalian LKB1 complex is constitutively active, and when enriched from bacteria should prove to be a valuable tool for studying its molecular function and regulation.  相似文献   

11.
Aging is a complex phenotype with multiple determinants but a strong genetic component significantly impacts on survival to extreme ages. The dysregulation of immune responses occurring with increasing age is believed to contribute to human morbidity and mortality. Conversely, some genetic determinants of successful aging might reside in those polymorphisms for the immune system genes regulating immune responses. Here we examined the main effects of single loci and multi-locus interactions to test the hypothesis that the adenosine deaminase (ADA) and tumor necrosis factor alpha (TNF-α) genes may influence human life-expectancy. ADA (22G>A, rs73598374) and TNF-α (−308G>A, rs1800629; −238G>A, rs361525) functional SNPs have been determined for 1071 unrelated healthy individuals from Central Italy (18–106 years old) divided into three gender-specific age classes defined according to demographic information and accounting for the different survivals between sexes: for men (women), the first class consists of individuals <66 years old (<73 years old), the second class of individuals 66–88 years old (73–91 years old), and the third class of individuals > 88 years old (>91 years old). Single-locus analysis showed that only ADA 22G>A is significantly associated with human life-expectancy in males (comparison 1 (age class 2 vs. age class 1), O.R. 1.943, P = 0.036; comparison 2 (age class 3 vs. age class 2), O.R. 0.320, P = 0.0056). Age- and gender-specific patterns of epistasis between ADA and TNF-α were found using Generalized Multifactor Dimensionality Reduction (GMDR). In comparison 1, a significant two-loci interaction occurs in females between ADA 22G>A and TNF-α −238G>A (Sign Test P = 0.011). In comparison 2, both two-loci and three-loci interaction are significant associated with increased life-expectancy over 88 years in males. In conclusion, we report that a combination of functional SNPs within ADA and TNF-α genes can influence life-expectancy in a gender-specific manner and that males and females follow different pathways to attain longevity.  相似文献   

12.
The design and synthesis of a novel series of Rev-erbα agonists is described. The development and optimization of the tetrahydroisoquinoline series was carried out from an earlier acyclic series of Rev-erbα agonists. Through the optimization of the scaffold 1, several potent compounds with good in vivo profiles were discovered.  相似文献   

13.
Tumor necrosis factor (TNF) is a central cytokine in the pathogenesis of septic shock and other inflammatory states. Assay by immunoassay is convenient, but, because of circulating soluble receptors, does not accurately reflect biological activity of the cytokine. This article describes how to perform a bioassay for TNF, using its cytopathic effect on the murine cell line L929. By suitable manipluation, the assay can determine the two different forms of TNF, alpha and beta.  相似文献   

14.
PTEN plays an important role in tumor suppression, and PTEN family members are involved in multiple biological processes in various subcellular locations. Here we report that PTENα, the first identified PTEN isoform, regulates mitophagy through promotion of PARK2 recruitment to damaged mitochondria. We show that PTENα-deficient mice exhibit accumulation of cardiac mitochondria with structural and functional abnormalities, and PTENα-deficient mouse hearts are more susceptible to injury induced by isoprenaline and ischemia-reperfusion. Mitochondrial clearance by mitophagy is also impaired in PTENα-deficient cardiomyocytes. In addition, we found PTENα physically interacts with the E3 ubiquitin ligase PRKN, which is an important mediator of mitophagy. PTENα binds PRKN through the membrane binding helix in its N-terminus, and promotes PRKN mitochondrial translocation through enhancing PRKN self-association in a phosphatase-independent manner. Loss of PTENα compromises mitochondrial translocation of PRKN and resultant mitophagy following mitochondrial depolarization. We propose that PTENα functions as a mitochondrial quality controller that maintains mitochondrial function and cardiac homeostasis.

Abbreviations: BECN1 beclin 1; CCCP carbonyl cyanide m-chlorophenylhydrazone; FBXO7 F-box protein 7; FS fraction shortening; HSPA1L heat shock protein family A (Hsp70) member 1 like; HW: BW heart weight:body weight ratio; I-R ischemia-reperfusion; ISO isoprenaline; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; MBH membrane binding helix; MFN1 mitofusin 1; MFN2 mitofusin 2; Nam nicotinamide; TMRM tetramethylrhodamine ethyl ester; WGA wheat germ agglutinin  相似文献   


15.
The genes coding for the regulatory type I subunit (PRKAR1A) and the catalytic subunit (PRKACB) of cAMP-dependent protein kinase and the genes for interleukin 1 (IL1A) and interleukin 1 (IL1B) were localized in the pig by means of radioactive in situ hybridization. PRKAR1A was mapped to 12p1.4 and PRKARB to 6q3.1 q3.3. The genes for IL1A and IL1B were both assigned to Chromosome (Chr) 3, in the region q1.2 q1.3 and q1.1 q1.4, respectively. The cDNA nucleotide sequences of these porcine genes were compared with those of human, mouse, and cattle. The location of the genes was discussed in relation to the position of their homologous loci in these mammalian species.  相似文献   

16.
A potential interaction between pulmonary function, abnormal adipose tissue activity, and systemic inflammation has been suggested. This study explores the relationship between circulating soluble TNF-α receptors (sTNF-R1 and sTNF-R2) and respiratory function parameters in obese subjects. Thirty-one non-diabetic morbidly obese women with a history of non-smoking and without prior cardiovascular or respiratory disease were prospectively recruited in the outpatient Obesity Unit of a referral center. Pulmonary function test included a forced spirometry, static pulmonary volume measurements, non-attended respiratory polygraphy, and arterial gas blood sampling. Circulating levels of sTNFR-R1, sTNF-R2, interleukine 6 and adiponectin were determined using ELISA. Statistical analysis included a multivariate regression analysis taking into account the potential confounders. sTNF-R1 positively correlated with BMI (r=0.571, p=0.001) and arterial carbon dioxide pressure (PaCO(2), r=0.381, p=0.038), but negatively with forced expiratory volume in 1s (FEV(1), r=-0.437, p=0.012), maximum midexpiratory flow (FEF(25-75), r=-0.370, p=0.040) and forced vital capacity (FVC, r=-0.483, p=0.005). However, no correlation between sTNF-R2 and BMI and either pulmonary function tests or arterial blood samples was observed. Multiple linear regression analysis showed that sTNF-R1 independently predicted FEV(1) (beta=-0.437, p=0.012) and FVC (beta=-0.483, p=0.005). Thus, circulating levels of sTNF-R1, but not sTNF-R2, are related to reduced lung volumes and airflow limitation in morbidly obese patients prior to the development of a clinically recognized respiratory disease. Therefore, studies addressed to evaluating the potential beneficial effect of anti-TNF-α agents on pulmonary function tests in obese subjects seem warranted.  相似文献   

17.
Hepatic gluconeogenic stimulation by 9αfluorocortisol was associated with saturation of GR1 and GR3 entities of the glucocorticoid specific receptor (GR), even in presence of spironolactone; renal glycogen levels were not altered. Binding to MR1 and MR2 components of the mineralocorticoid specific receptor (MR) in the kidney persisted even in presence of 100 fold excess of nonradioactive corticosterone although this was totally abolished by cold equimolar spironolactone. These data suggest that this fluorinated derivative may be particularly appropriate in studying organ specific responses.  相似文献   

18.
Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1.  相似文献   

19.
Biomechanical stress modulates vascular tone, vascular remodelling and the spatial localisation of atherosclerotic plaques. Inflammatory cytokines, such as TNF-α, regulate expression of genes that impair the function of endothelial cells. This study investigates the combinatory effect of different biomechanical stresses and TNF-α on the expression of endothelial anti- and prothrombotic genes. Human umbilical vein endothelial cells were exposed to TNF-α and different levels of static/pulsatile tensile stress or shear stress. The response in endothelial cells to TNF-α was not modulated by tensile stress. However, shear stress was a more potent stimulus. Shear stress counteracted the cytokine-induced expression of VCAM-1, and the cytokine-suppressed expression of thrombomodulin and eNOS. Shear stress and TNF-α additively induced PAI-1, whereas shear stress blocked the cytokine effect on t-PA and u-PA. A flow profile characterized by high laminar shear stress seems to render the endothelial cell more resistant to inflammatory stress.  相似文献   

20.
Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADα in complex with MO25α. The structure reveals an intricate web of interactions between STRADα and MO25α involving the αC-helix of STRADα, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADα binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADα for MO25α, and conversely, binding of MO25α promotes interaction of STRADα with ATP. Mutagenesis studies reveal that association of STRADα with either ATP or MO25α is essential for LKB1 activation. We conclude that ATP and MO25α cooperate to maintain STRADα in an “active” closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADα that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADα and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADα to activate LKB1 is dependent on a closed “active” conformation, aided by ATP and MO25α binding. Thus, the function of STRADα is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号