首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
2.
Elucidating the temporal order of silencing   总被引:1,自引:0,他引:1  
Izaurralde E 《EMBO reports》2012,13(8):662-663
  相似文献   

3.
4.
5.
6.
Assisted reproductive technologies enable subfertile couples to have children. But there are health risks attached for both mothers and children that need to be properly understood and managed.Assisted reproductive technology (ART) has become a standard intervention for couples with infertility problems, especially as ART is highly successful and overall carries low risks [1,2]. The number of infants born following ART has increased steadily worldwide, with more than 5,000,000 so far [3]. In industrialized countries, 1–4% of newborns have been conceived by using ART [4,5], probably owing to the fact that couples frequently delay childbearing until their late 30s, when fertility decreases in both men and women [2]. Considering the possibility that male fertility might be declining, as Richard Sharpe has discussed in this series [6], it is likely that ART will be even more widely used in the future. Yet, as the rate of ART and the total number of pregnancies has increased, it has become apparent that ART is associated with potential risks to the mother and fetus. The most commonly cited health problems pertain to multiple gestation pregnancies and multiple births. More recently, however, concerns about the risks of birth defects and genetic disorders have been raised. There are questions about whether the required manipulations and the artificial environments of gametes and embryos are potentially creating short- and long-term health risks in mothers and children by interfering with epigenetic reprogramming.Notwithstanding, ART represents a tremendous achievement in human reproductive medicine. The birth of Louise Brown, the first ‘test tube baby'' in 1978, was the result of the collaborative work of embryologist Robert Edwards and gynaecologist Patrick Steptoe [7]. This success was a culmination of many years of work at universities and clinics worldwide. An initial lack of support, as well as criticism from ethicists and the church, delayed the opening of the first in vitro fertilization (IVF) clinic in Bourn Hall near Cambridge until 1980. By 1986, 1,000 children conceived by IVF at Bourn Hall had been born [8]. In 2010, Edwards received the Nobel Prize in Medicine for the development of IVF. Regrettably, Steptoe had passed away in 1988 and could not share the honour.…as the rate of ART and the total number of pregnancies has increased, it has become apparent that ART is associated with potential risks to mother and fetusOver the next decades, many improvements in IVF procedures were made to reduce the risks of adverse effects and increase success rates, including controlled ovarian stimulation, timed ovulation induction, ultrasound-guided egg retrieval, cryopreservation of embryos and intracytoplasmic sperm injection (ICSI)—a technique in which a single sperm cell is injected into an oocyte using a microneedle. In addition, there were further improvements such as assisted hatching and in media composition, such as sequential media, which allow the in vitro culture of the embryo to reach the blastocyst stage [8].Current IVF procedures involve multiple steps including ovarian stimulation and monitoring, oocyte retrieval from the ovary, fertilization in vitro and embryo transfer to the womb. Whereas the first IVF cycles, including the conception of Louise Brown, used natural ovulatory cycles, which result in the retrieval of one or two oocytes, most IVF cycles performed today rely on controlled ovarian stimulation using injectable gonadotropins—follicle stimulating hormone and luteinizing hormone—in supraphysiological concentrations for 10–14 days, followed by injection of human chorionic gonadotropin (hCG) 38–40 h before egg retrieval to trigger ovulation. This updated protocol makes it possible to grow multiple follicles and to retrieve 10–20 oocytes in one IVF cycle, thereby increasing the number of eggs available for fertilization.Post-retrieval, the embryologist places an egg and sperm together in a test tube for fertilization. Alternatively, a single sperm cell can be injected into an egg by using ICSI. This procedure was initially developed for couples with poor sperm quality [9], but has become the predominant fertilization technique used in many IVF clinics worldwide [8]. The developing embryos are monitored by microscopy, and viable embryos are transferred into the woman''s womb for implantation. Louise Brown, as with many embryos today, was transferred three days after egg retrieval, at approximately the eight-cell stage. However, using sequential media, many clinics advocate culturing embryos until day five when they reach the blastocyst stage. The prolonged culture period allows self-selection of the most viable embryos for transfer and increases the chance of a viable pregnancy. Excess embryos can be cryopreserved and transferred at a later date by using a procedure known as frozen embryo transfer (FET). In this article we use the term ART to refer to IVF procedures with or without ICSI and FET.

Science & Society Series on Sex and Science

Sex is the greatest invention of all time: not only has sexual reproduction facilitated the evolution of higher life forms, it has had a profound influence on human history, culture and society. This series explores our attempts to understand the influence of sex in the natural world, and the biological, medical and cultural aspects of sexual reproduction, gender and sexual pleasure.Embryos can also be screened for chromosomal aneuploidies—missing or extra chromosomes—by preimplantation genetic diagnosis (PGD) when indicated and when available. PGD can also be used to test fertile couples at increased risk of genetic disorders. To perform PGD, a single cell is obtained from three-day-old embryos for molecular testing, for example sequencing for inherited monogenic disorders or fluorescent in situ hybridization for chromosomal abnormalities [8]. Only embryos with a normal chromosomal constitution, and without the genetic disorder in question, would then be transferred into the woman''s womb.Despite tremendous progress during the past three decades, people undertaking ART still face a considerable risk of failure to achieve parenthood. The rate of clinical pregnancies in Bourn Hall between 1980 and 1985 was 24% and 14% in women younger and older than 40 years, respectively [10]. The reported rates for clinical pregnancies and live births vary by country; the average delivery rate is 22.4%, 23.3% and 17.1% for IVF, ICSI and FET cycles, respectively [11]. According to the last Centers for Disease Control and Prevention report in 2009, the average live-birth rate was 35% per fresh ART cycle, although it sharply declines with age, from 45% among women younger than 35 years to 7% among women older than 42 years [5]. The reasons include poor response to ovarian stimulation, ovarian hyperstimulation syndrome and failure of eggs to fertilize. However, these failures occur in only a minority of patients and the success rate of egg retrieval and fertilization leading to embryo transfer is a remarkable 90% [12].Implantation remains the least understood process and is a key rate-limiting step in ART. Poor embryo quality is considered to be the main cause of implantation failure and it reflects a high incidence of chromosomal aneuploidies, which increases with maternal age [13]. One obvious solution to improve implantation rates is to transfer more embryos. However, this also increases the risk of multiple births, and related morbidity and mortality in newborns. An alternative approach is to select for good-quality embryos by culturing them to the blastocyst stage, because it seems that aneuploid embryos arrest by this stage and that blactocysts are more likely to have a normal chromosomal complement. There is ongoing research aimed at identifying viable embryos through PGD and metabolic profiling [13].Despite tremendous progress during the past three decades, people undertaking ART still face a considerable risk of failure to achieve parenthoodIt has also been suggested that failure to implant could be caused by the inability of the embryo to hatch out of a glycoprotein layer surrounding the embryo, known as the ‘zona pellucida''; this layer hardens if the embryo is cultured or frozen. Assisted hatching by rupturing the zona pellucida before embryo transfer does increase clinical pregnancy rates, especially for thawed embryos [13]. Another factor linked to the failure of implantation is endometrial receptivity. The endometrium consists of multi-layered mucosa cells in the inner wall of the uterus, which undergoes coordinated remodelling during the menstrual cycle and there is a specific time window when it is receptive to embryo implantation. Several research studies have identified molecular biomarkers of poor endometrial receptivity, showing that prostaglandins, cell adhesion molecules, mucins and cytokines are important [13].When it comes to health risks for mothers and infants, the use of ART increases the risk of multiple births, including higher rates of caesarian sections, prematurity, low birth weight, infant death and disability. More recently, concerns regarding elevated risks of birth defects, genetic abnormalities, neurodevelopmental disorders and imprinting disorders have been reported; however, not all are substantiated. There are still many unanswered questions regarding the potential short- and long-term health risks of ART for women and children, and there are tremendous challenges in studying the safety of ART procedures. Apart from the subset of individuals undergoing ART for social reasons—single parents or same sex couples—most patients are subfertile couples. Subfertility, defined as a failure to conceive naturally after 12 months of unprotected intercourse, affects 8–20% of couples [2], and it can occur for a variety of unknown or known reasons including maternal factors—endocrine, hormonal, endometriosis and blocked fallopian tubes—and paternal factors such as spermatogenesis abnormalities.Most studies have assessed the risks of ART by comparing the outcomes of ART-conceived pregnancies to naturally conceived pregnancies. There is emerging evidence that underlying maternal or paternal subfertility might be an important factor in obstetric, neonatal and childhood outcomes in the ART population. Therefore, to determine the specific health risks associated with the ART process itself, the outcomes of ART-conceived pregnancies should be assessed in comparison with naturally conceived pregnancies in subfertile parents, which is methodologically difficult. Alternatively, studying the health risks of ART in fertile couples—for instance, same-sex couples and couples at risk of genetic disorders—would be informative, but the number of such couples is relatively small.Women who undergo ART are at risk of ovarian hyperstimulation syndrome (OHSS). OHSS is a complication of ovulation induction resulting in enlargement of ovaries and retention of fluids leading to various secondary complications, which normally resolve within two weeks, but can persist if pregnancy occurs. Patients with OHSS can be offered embryo cryopreservation and frozen embryo transfer when symptoms resolve. Moderate forms of OHSS occur in 5% of patients undergoing ART; 2% of patients require hospitalization. Death occurs with an incidence of approximately 3 per 100,000 ART cycles [14]. OHSS is predominantly caused by human chorionic gonadotropin injection used for inducing final oocyte maturation and ovulation. Research is focused on optimizing alternative stimulation protocols [14].The use of supraphysiological concentrations of hormones during ovarian stimulation has also raised concerns that ART can increase cancer risks linked to hormonal fluctuations. These include breast, ovarian, endometrial, cervical and colon cancers, as well as melanoma. Studies evaluating the risks of cervical cancers, colon cancers and melanoma have not demonstrated increased risks for women undergoing ART [1]. The data for breast, ovarian and endometrial cancer is more complex, however, and more research is required to conclusively determine whether there is an increased risk.The perinatal and obstetric risks of ART are most significantly influenced by multiple pregnancies. These are at a more than 60% risk of low birth weight or premature delivery [2], and related risks of pregnancy complications such as gestational diabetes, abnormal placentation and hypertensive disorders [1]. Multiple pregnancies occur in 1% of naturally conceived pregnancies and 25–50% of ART pregnancies, owing to multiple embryo transfer. In the Western world, about 30–50% of all twin pregnancies result from ART [2]. Whilst double or triple embryo transfer is still common, the development of cryopreservation techniques and extended blastocyst culture has increased the use of single embryo transfer (SET), especially for younger women. Many European countries and the province of Quebec, in Canada, where ART is publicly funded, have adopted a policy of SET, which has dramatically decreased the incidence of multiple pregnancies. In Belgium and Quebec, SET policies have reduced multiple pregnancies from 19% to 3% and from 27% to 6%, respectively. It has been argued that SET results in a lower live-birth rate than a double-embryo transfer, but this is almost completely overcome by an additional single frozen embryo cycle [2].…there are tremendous challenges in studying the safety of ART proceduresThe question of whether ART increases the risks of pregnancy complications, including prematurity and low birth weight in singletons, remains unresolved; several studies have found an increased risk, but others have not replicated these findings [1,2]. It has been suggested that the fertility history of patients undergoing ART is an important factor, as there is an association between the length of time to conception and prematurity and birth weight [15]. Prematurity and low birth weight are also known to be associated with long-term health effects, including adult onset coronary artery disease, hypertension, obesity and type 2 diabetes [16,17].Various studies have also reported a higher incidence of congenital anomalies in ART-conceived children, with a suggested 30% increase of malformations [2]. However, this is another risk that might be attributable to parental subfertility, as a study comparing children conceived by ART to subfertile parents and children conceived naturally to subfertile parents did not find any significant difference in the congenital anomaly rate [2]. Findings from another study of the risks of birth defects in children conceived naturally to women with and without a history of subfertility compared with children conceived with the assistance of ART also suggest that it is subfertility, rather than ART, that is associated with an increased risk of birth defects [18].Several studies reported an increased risk of cerebral palsy and other neurological abnormalities in children conceived by ART [2]. But again, these findings are mainly attributed to complications resulting from multiple pregnancies including prematurity and low birth weight. The increased utilization of SET is therefore expected to result in fewer multiple pregnancies, which should result in a concomitant decrease in neurological complications. Further evidence that neurological complications in ART children are not exclusively related to ART came from studies that have assessed neurodevelopmental outcomes, such as locomotion, cognition, language and behavioural development of ART children in comparison with naturally conceived children. These analyses did not reveal any differences when adjusted for confounding factors of low birth weight and prematurity. In a similar vein, numerous studies have investigated whether there is an increased incidence of autism in ART-conceived children, but these have been inconclusive [19].There are potential concerns regarding the fertility of ART children. However, this requires future studies as most of this population is younger than 30 years of age. There is some evidence that boys conceived through ICSI have an increased rate of genital anomalies [2] and that males with severe infertility, such as low sperm counts, are more likely to carry chromosomal abnormalities, which could be passed on to their children conceived through ICSI [15].It has also been suggested that there might be an increased risk of cancers in ART-conceived offspring. Although multiple studies have identified no such risk, a large Swedish study reported a marginally increased risk of cancer, including haematologic, eye, nervous system, solid tumours and histiocytosis [2]. Similarly to other ART-related adverse health outcomes, it has been suggested that the increased risk of cancer could be attributed to prematurity, a recognized risk factor for cancer, rather than to the ART procedure itself. Further long-term studies are required to determine if there is truly an increased risk of adult cancers in ART offspring.…there remain unanswered questions about both the health risks associated with ART and the potential mechanisms that could account for these findingsOne thing is clear from the available evidence to date: there remain unanswered questions about both the health risks associated with ART and the potential mechanisms that could account for these findings. One possible explanation is that the exposure of gametes and preimplantation embryos to the various steps of ART might affect growth and development of offspring through dysregulation of epigenetic pathways [20]. In addition, there is evidence that genetic and epigenetic alterations might be inherited from the gametes of subfertile parents, which would reinforce assertions that subfertility itself might play a role in ART-related health outcomes [1,20].Epigenetics refers to heritable changes in gene expression without alterations to the underlying DNA sequence. DNA methylation and modifications of histones are epigenetic modifications that determine active against repressive conformation of chromatin structure, thereby regulating gene expression and driving essential processes such as embryonic development, fetal organ development, cell differentiation and tissue-specific gene expression [21]. Genomic imprinting is a type of epigenetic gene regulation that uses epigenetic marks to silence specifically one of the parental alleles. There are approximately 100 known imprinted genes in humans [22]. Most imprinted genes are found in clusters across the genome and are regulated by parent-specific DNA methylation and histone modification marks at cis-acting imprinting centres, as well as non-coding RNAs. Most of the known imprinted genes have functions related to growth and behaviour; disruption of the normally programmed parental expression of imprinted genes can therefore result in disorders related to growth and neurodevelopment.Gametogenesis and embryogenesis are important stages of mammalian development that require genome-wide epigenetic reprogramming. During spermatogenesis, protamines replace most histone proteins to create a highly compacted DNA. Establishment of DNA methylation imprints at paternally methylated imprinting centres is complete in males at the time of birth. In females, the establishment of maternally methylated imprinting centres begins during puberty and is almost complete in ovulated oocytes. After fertilization, the paternal genome undergoes rapid active DNA demethylation in which protamines are replaced by histones, whilst the maternal genome is passively demethylated, so that DNA methylation patterns are lost through cell divisions. Although, the whole genome undergoes demethylation, parent-specific DNA methylation is maintained at imprinting centres. Subsequently, the genome is remethylated and cell-type-specific epigenetic patterns are established as embryonic development proceeds. The parent-specific DNA methylation at imprinting centres is maintained in somatic cells, but it is erased and re-established in the gametes starting a new cycle of imprinting (Fig 1; [23]). As the establishment and maintenance of imprinting marks coincides in timing with important stages of ART, such as oocyte maturation under supraphysiological hormone concentrations and embryo culture, it has been proposed that ART can lead to imprinting errors [24].Open in a separate windowFigure 1Life cycle of genomic imprinting and assisted reproductive technology. Erasure, re-establishment and maintenance of genomic imprinting occur during gametogenesis and preimplantation embryo development. Blue and red solid lines show paternal and maternal methylation at imprinting centres through gametogenesis and early stages of preimplantation development. Imprinting marks are erased at early stages of gametogenesis. Re-establishment of imprinting occurs throughout gametogenesis, but finishes much later in oocytes compared with sperm. During preimplantation development, both maternal and paternal imprinting marks are maintained whilst the rest of the genome is demethylated. The paternal genome is demethylated rapidly and actively (dashed blue line) whilst the maternal genome is demethylated at a slower rate passively through cell division (dashed red line). Various steps of assisted reproductive technology such as ovarian stimulation, ovulation induction, gamete and embryo manipulation and culturing create unusual environments for gametes and embryos and thus, can interfere with proper establishment of imprinting marks in oocytes or maintenance of imprinting marks in embryos. Subfertility can be associated with epigenetic errors in imprinting erasure and/or establishment in both oocytes and sperm. Adapted from [23].In 2001, the first evidence that genomic imprinting can be perturbed during ART procedures came from studying sheep fetuses derived from in vitro cultured embryos that presented with large offspring syndrome (LOS; [25]). LOS occurs sporadically in cattle and sheep conceived by IVF and is characterized by a 20–30% increase in birth weight frequently accompanied by congenital anomalies and placental dysfunction [24]. Owing to phenotypic similarities of LOS to the human overgrowth disorder Beckwith–Wiedemann syndrome (BWS), which is caused by the dysregulation of gene expression within an imprinted cluster on chromosome 11p15.5, the authors hypothesized that genes from the orthologous cluster in sheep or a closely related pathway could be dysregulated in LOS. They tested expression of the insulin-like growth factor 2 (IGF2) gene known to be overexpressed in BWS, and the IGF2R receptor gene, which is involved in clearance of IGF2 from the circulation. IGF2R is imprinted in sheep but not in humans. In sheep with LOS, no differences for IGF2 were found, but reduced expression of IGF2R was observed after loss of DNA methylation at the imprinting centre for this gene [25].In the following decade, several studies provided further evidence that children conceived by ART might be at increased risk of imprinting disorders. The strongest case has been made for BWS and Angelman syndrome. BWS is the most common human overgrowth syndrome characterized by prenatal and postnatal overgrowth, congenital anomalies and tumour predisposition [26]. Angelman syndrome is a neurodevelopmental disorder characterized by microcephaly, severe intellectual disability and a unique behavioural profile including frequent laughter, smiling and excitability [27]. Multiple case reports from various countries indicate an increased frequency of BWS and Angelman syndrome in ART children (3–10-fold) compared with the general population. However, two cohort studies failed to replicate this association [28]. The low incidence of both BWS (1 in 13,700) and Angelman syndrome (1 in 15,000) in the general population [28] makes epidemiological studies difficult—the two cohort studies reported 2,492 and 6,052 ART children, respectively, and are probably underpowered to detect an increased risk of BWS and Angelman syndrome. However, even if there might be increased relative risks for these syndromes in ART children, the absolute risks in this population remain low.The molecular causes of BWS and Angelman syndrome are heterogeneous. They include genomic (deletion, uniparental disomy and gene mutation) and epigenetic (loss of imprinting due to aberrant DNA methylation) alterations at imprinted gene clusters on chromosomes 11p5.5 and 15q11–q13, respectively. These alterations occur with specific frequencies for each of the two disorders [26,27]. Results of molecular testing in children with these syndromes and conceived using ART, reveal an excess of epigenetic compared with genetic molecular alterations. For example, loss of DNA methylation at imprinting centre 2 occurs in about 50% of BWS cases in the general population, whereas several studies found loss of DNA methylation at imprinting centre 2 in 96% (27/28) of BWS ART-conceived children. In Angelman syndrome, approximately 3% of cases in the general population have loss of methylation at 15q11–13, whereas 5 out of 19 (26%) Angelman syndrome children conceived by ART or naturally by parents with a history of subfertility had loss of DNA methylation at 15q11–13 (Fig 2).Open in a separate windowFigure 2Enrichment of epigenetic alterations in Beckwith–Wiedemann syndrome and Angelman syndrome after assisted reproductive technology. Loss of methylation (LOM) at imprinting centre 2 (IC2) on chromosome 11p15.5 contributes to 50% of Beckwith–Wiedemann syndrome (BWS) cases in the general population, whereas LOM at IC2 is found in 27 out of 28 cases (96%) in the BWS assisted reproductive technology (ART) population, which represents a 1.9-fold enrichment of this epigenetic defect. For Angelman syndrome (AS), methylation disruption at the 15q11–q13 imprinting centre contributes to 3% of AS cases, and in the AS ART and subfertility population it was found in 5 out of 19 cases (26%; eight fold enrichment). Data from the following publications were used for these calculations, BWS [31,32,33,34,35] AS [35,36].The data for loss of DNA methylation in Angelman syndrome cases conceived naturally by subfertile parents highlights the fact that epigenetic alterations could, at least in part, result from underlying parental subfertility. Indeed, several studies have shown that abnormalities of spermatogenesis, such as oligospermia (low sperm concentration), low sperm motility or abnormal sperm morphology are associated with altered DNA methylation at imprinted loci. These occur in both maternal and paternal alleles of imprinting centres in sperm and could be transmitted to offspring conceived by ART [26]. One study of chromosomally normal fetuses spontaneously aborted at six to nine weeks of gestation found that DNA methylation alterations at imprinted loci were sometimes inherited from sperm. Thus, it is possible that this dysregulation of imprinting in male gametes might be one cause of the association between imprinting disorders and ART.Studies of other known imprinted syndromes, such as Prader–Willi syndrome, Russell–Silver syndrome, maternal and paternal uniparental disomy of chromosome 14, pseudohypoparathyroidism type 1b and transient neonatal diabetes mellitus, have either not demonstrated an association with ART or have been inconclusive owing to their small size [29]. A link has also been suggested between ART and the newly defined ‘multiple maternal hypomethylation syndrome'', which clinically presents either as BWS or transient neonatal diabetes mellitus, and is associated with loss of DNA methylation at multiple maternally methylated imprinting centres; loss of methylation at paternal imprinting centres has not been reported so far. Thus, human imprinting disorders that have been observed with increased relative frequency in ART offspring are confined to loss of DNA methylation at maternally methylated imprinting centres, similar to epimutations of IGF2R in LOS. One could propose that ART has a greater impact on female than male gametes, as the eggs are subjected to more environmental exposures—supraphysiological doses of hormones—and more manipulation than the sperm. However, studies of mouse in vitro cultured embryos and ART-exposed human and mouse gametes suggest that ART can also be associated with either loss or gain of DNA methylation on both maternal and paternal alleles [23].Mouse models are a valuable method to investigate which stages of ART procedures can disrupt normal imprinting patterns. The advantage of using mouse models is the ability to investigate each of the parameters of ART—ovulation stimulation and embryo culturing—separately and at different stages of development. Furthermore, mouse models allow investigators to alter ART parameters, such as concentration of hormones or media for embryo culturing. Most importantly, studies in animal models have shown that ART procedures without the confounding factor of subfertility do have a negative impact on imprint regulation [23].The exposure of maturing oocytes from mice to abnormally high doses of gonadotropins has been suggested to alter imprint establishment. Yet, studies performed directly on superovulated oocytes are inconclusive, as not all of them have demonstrated increased rates of DNA methylation errors at imprint centres compared with spontaneously ovulated oocytes. Interestingly, studies of DNA methylation in mouse blastocysts harvested from superovulated mothers identified an increased rate of DNA methylation errors at imprint centres. This included loss of DNA methylation at the paternally methylated H19—the imprinting centre on human chromosome 11 and mouse chromosome 7 implicated in BWS and the related undergrowth Russell–Silver syndrome. It suggests that superovulation also impairs imprinting maintenance; probably by affecting the ability of the oocyte to synthesize and store sufficient maternal factors (RNA and proteins; [23]). In support of this hypothesis, four maternal effect proteins have been previously identified that are involved in imprinting maintenance in preimplantation embryos. It was also found that imprint errors arise in blastocysts in a dose-dependent manner—higher doses of hormones resulted in DNA methylation errors in a larger number of embryos [23].As the establishment and maintenance of imprinting marks coincides in timing with important stages of ART […] it has been proposed that ART can lead to imprinting errorsAnother factor that might contribute to imprinting errors is the micromanipulation of gametes during IVF and ICSI procedures. Evidence supporting this hypothesis includes the observation in mouse models that a higher number of IVF embryos—resulting from superovulation alone or superovulation and embryo culturing—have aberrant H19 DNA methylation compared with in vivo conceived embryos [23]. Media with varying compositions are used in ART clinics, and whilst all of the media are suboptimal for normal maintenance of all DNA imprints in mouse embryos, the number of embryos with aberrant DNA methylation at imprinting centres varies depending on the media [23]. Interestingly, it was also found that embryos with faster rates of development are more prone to loss of DNA methylation at imprinting centres [23].Though it is not yet clear how these findings relate to ART in humans, the mouse research is crucial for informing human studies about which variables should be addressed to optimize the safety and efficacy of ART procedures. Apart from ART itself, it has been shown that compromised fertility in mice results in loss or delay of DNA methylation acquisition in one of three tested imprinted genes. The compromised fertility is induced by genetic manipulation of a gene involved in communication between oocytes and surrounding follicular cells, which is crucial for proper oocyte maturation. The results suggest that the observed loss of DNA methylation could be caused by impaired transport of metabolites from follicular cells to oocytes, which is important for imprint establishment [23].Data linking dysregulation of imprinted loci and ART is limited to several imprinted gene clusters associated with clinically recognizable syndromes. However, there are more genes in the human genome that have been discovered to be, or are predicted to be, imprinted [22] but are not yet known to be associated with clinical phenotypes. Potentially, ART can lead to dysregulation of these imprinted genes, which might be another, as yet unrecognized factor contributing to neonatal and long-term health problems of ART-conceived children. At this point, it is also not clear whether epigenetic disruption during ART is limited to imprinted genes or has more global effects on the genome. The data for genome-wide DNA methylation analysis are limited in both human and mouse to individuals with no apparent disease phenotype. So far, these data have been inconclusive [23,28].One could propose that ART has a greater impact on female than male gametes, as the eggs are subjected to more environmental exposures […] and more manipulation than the spermDespite significant advances in the efficacy and success of ART procedures during the past few decades, the health risks, especially related to long-term outcomes in ART-conceived children, remain poorly understood. Moreover, the phenomena known as ‘fetal programming''—when maternal and in utero exposures can lead to various adult onset disease susceptibilities—have been suggested to be transmissible to the next generations, probably through epigenetic mechanisms [30]. In the case of ART procedures, the effect of ‘unusual'' environments during gametogenesis and early embryonic development on adult-onset disease and trans-generational inheritance is still not clear. Additional research is needed to elucidate the effects of ART on genome-wide epigenetic patterns and their link to human disease. As ART will continue to be an important medical intervention and the number of children born with the help of ART procedures will probably continue to rise in the future, it is crucial to understand the associated health risks and underlying molecular mechanisms of these technologies. This will increase the safety of this intervention and enable couples using ART to be fully informed regarding both present and future health-related risks.? Open in a separate windowDaria GrafodatskayaOpen in a separate windowCheryl CytrynbaumOpen in a separate windowRosanna Weksberg  相似文献   

7.
8.
9.
Two articles—one published online in January and in the March issue EMBO reports—implicate autophagy in the control of appetite by regulating neuropeptide production in hypothalamic neurons. Autophagy decline with age in POMC neurons induces obesity and metabolic syndrome.Kaushik et al. EMBO reports, this issue doi:10.1038/embor.2011.260Macroautophagy, which I will call autophagy, is a critical process that degrades bulk cytoplasm, including organelles, protein oligomers and a range of selective substrates. It has been linked with diverse physiological and disease-associated functions, including the removal of certain bacteria, protein oligomers associated with neurodegenerative diseases and dysfunctional mitochondria [1]. However, the primordial role of autophagy—conserved from yeast to mammals—appears to be its ability to provide nutrients to starving cells by releasing building blocks, such as amino acids and free fatty acids, obtained from macromolecular degradation. In yeast, autophagy deficiency enhances death in starvation conditions [2], and in mice it causes death from starvation in the early neonatal period [3,4]. Two recent articles from the Singh group—one of them in this issue of EMBO reports—also implicate autophagy in central appetite regulation [5,6].Autophagy seems to decline with age in the liver [7], and it has thus been assumed that autophagy declines with age in all tissues, but this has not been tested rigorously in organs such as the brain. Conversely, specific autophagy upregulation in Caenorhabditis elegans and Drosophila extends lifespan, and drugs that induce autophagy—but also perturb unrelated processes, such as rapamycin—promote longevity in rodents [8].Autophagy literally means self-eating, and it is therefore interesting to see that this cellular ‘self-eating'' has systemic roles in mammalian appetite control. The control of appetite is influenced by central regulators, including various hormones and neurotransmitters, and peripheral regulators, including hormones, glucose and free fatty acids [9]. Autophagy probably has peripheral roles in appetite and energy balance, as it regulates lipolysis and free fatty acid release [10]. Furthermore, Singh and colleagues have recently implicated autophagy in central appetite regulation [5,6].The arcuate nucleus in the hypothalamus has received extensive attention as an integrator and regulator of energy homeostasis and appetite. Through its proximity to the median eminence, which is characterized by an incomplete blood–brain barrier, these neurons rapidly sense metabolic fluctuations in the blood. There are two different neuronal populations in the arcuate nucleus, which appear to have complementary effects on appetite (Fig 1). The proopiomelanocortin (POMC) neurons produce the neuropeptide precursor POMC, which is cleaved to form α-melanocyte stimulating hormone (α-MSH), among several other products. The α-MSH secreted from these neurons activates melanocortin 4 receptors on target neurons in the paraventricular nucleus of the hypothalamus, which ultimately reduce food intake. The second group of neurons contain neuropeptide Y (NPY) and Agouti-related peptide (AgRP). Secreted NPY binds to downstream neuronal receptors and stimulates appetite. AgRP blocks the ability of α-MSH to activate melanocortin 4 receptors [11]. Furthermore, AgRP neurons inhibit POMC neurons [9].Open in a separate windowFigure 1Schematic diagram illustrating the complementary roles of POMC and NPY/AgRP neurons in appetite control. AgRP, Agouti-related peptide; MC4R, melanocortin 4 receptor; α-MSH, α-melanocyte stimulating hormone; NPY, neuropeptide Y; POMC, proopiomelanocortin.The first study from Singh''s group started by showing that starvation induces autophagy in the hypothalamus [5]. This finding alone merits some comment. Autophagy is frequently assessed by using phosphatidylethanolamine-conjugated Atg8/LC3 (LC3-II), which is specifically associated with autophagosomes and autolysosomes. LC3-II levels on western blot and the number of LC3-positive vesicles strongly correlate with the number of autophagosomes [1]. To assess whether LC3-II formation is altered by a perturbation, its level can be assessed in the presence of lysosomal inhibitors, which inhibit LC3-II degradation by blocking autophagosome–lysosome fusion [12]. Therefore, differences in LC3-II levels in response to a particular perturbation in the presence of lysosomal inhibitors reflect changes in autophagosome synthesis. An earlier study using GFP-LC3 suggested that autophagy was not upregulated in the brains of starved mice, compared with other tissues where this did occur [13]. However, this study only measured steady state levels of autophagosomes and was performed before the need for lysosomal inhibitors was appreciated. Subsequent work has shown rapid flux of autophagosomes to lysosomes in primary neurons, which might confound analyses without lysosomal inhibitors [14]. Thus, the data of the Singh group—showing that autophagy is upregulated in the brain by a range of methods including lysosomal inhibitors [5]—address an important issue in the field and corroborate another recent study that examined this question by using sophisticated imaging methods [15].“…decreasing autophagy with ageing in POMC neurons could contribute to the metabolic problems associated with age”Singh and colleagues then analysed mice that have a specific knockout of the autophagy gene Atg7 in AgRP neurons [5]. Although fasting increases AgRP mRNA and protein levels in normal mice, these changes were not seen in the knockout mice. AgRP neurons provide inhibitory signals to POMC neurons, and Kaushik and colleagues found that the AgRP-specific Atg7 knockout mice had higher levels of POMC and α-MSH, compared with the normal mice. This indicated that starvation regulates appetite in a manner that is partly dependent on autophagy. The authors suggested that the peripheral free fatty acids released during starvation induce autophagy by activating AMP-activated protein kinase (AMPK), a known positive regulator of autophagy. This, in turn, enhances degradation of hypothalamic lipids and increases endogenous intracellular free fatty acid concentrations. The increased intracellular free fatty acids upregulate AgRP mRNA and protein expression. As AgRP normally inhibits POMC/α-MSH production in target neurons, a defect in AgRP responses in the autophagy-null AgRP neurons results in higher α-MSH levels, which could account for the decreased mouse bodyweight.In follow-up work, Singh''s group have now studied the effects of inhibiting autophagy in POMC neurons, again using Atg7 deletion [6]. These mice, in contrast to the AgRP autophagy knockouts, are obese. This might be accounted for, in part, by an increase in POMC preprotein levels and its cleavage product adrenocorticotropic hormone in the knockout POMC neurons, which is associated with a failure to generate α-MSH. Interestingly, these POMC autophagy knockout mice have impaired peripheral lipolysis in response to starvation, which the authors suggest might be due to reduced central sympathetic tone to the periphery from the POMC neurons. In addition, POMC-neuron-specific Atg7 knockout mice have impaired glucose tolerance.This new study raises several interesting issues. How does the autophagy defect in the POMC neurons alter the cleavage pattern of POMC? Is this modulated within the physiological range of autophagy activity fluctuations in response to diet and starvation? Importantly, in vivo, autophagy might fluctuate similarly (or possibly differently) in POMC and AgRP neurons in response to diet and/or starvation. Given the tight interrelation of these neurons, how does this affect their overall response to appetite regulation in wild-type animals?Finally, the study also shows that hypothalamic autophagosome formation is decreased in older mice. To my knowledge, this is the first such demonstration of this phenomenon in the brain. The older mice phenocopied aspects of the POMC-neuron autophagy null mice—increased hypothalamic POMC preprotein and ACTH and decreased α-MSH, along with similar adiposity and lipolytic defects, compared with young mice. These data are provocative from several perspectives. In the context of metabolism, it is tantalizing to consider that decreasing autophagy with ageing in POMC neurons could contribute to the metabolic problems associated with ageing. Again, this model considers the POMC neurons in isolation, and it would be important to understand how reduced autophagy in aged AgRP neurons counterbalances this situation. In a more general sense, the data strongly support the concept that neuronal autophagy might decline with age.Autophagy is a major clearance route for many mutant, aggregate-prone intracytoplasmic proteins that cause neurodegenerative disease, such as tau (Alzheimer disease), α-synuclein (Parkinson disease), and huntingtin (Huntington disease), and the risk of these diseases is age-dependent [1]. Thus, it is tempting to suggest that the dramatic age-related risks for these diseases could be largely due to decreased neuronal capacity of degrading these toxic proteins. Neurodegenerative pathology and age-related metabolic abonormalities might be related—some of the metabolic disturbances that occur in humans with age could be due to the accumulation of such toxic proteins. High levels of these proteins are seen in many people who do not have, or who have not yet developed, neurodegenerative diseases, as many of them start to accumulate decades before any sign of disease. These proteins might alter metabolism and appetite either directly by affecting target neurons, or by influencing hormonal and neurotransmitter inputs into such neurons.  相似文献   

10.
11.
12.
13.
The temptation to silence dissenters whose non-mainstream views negatively affect public policies is powerful. However, silencing dissent, no matter how scientifically unsound it might be, can cause the public to mistrust science in general.Dissent is crucial for the advancement of science. Disagreement is at the heart of peer review and is important for uncovering unjustified assumptions, flawed methodologies and problematic reasoning. Enabling and encouraging dissent also helps to generate alternative hypotheses, models and explanations. Yet, despite the importance of dissent in science, there is growing concern that dissenting voices have a negative effect on the public perception of science, on policy-making and public health. In some cases, dissenting views are deliberately used to derail certain policies. For example, dissenting positions on climate change, environmental toxins or the hazards of tobacco smoke [1,2] seem to laypeople as equally valid conflicting opinions and thereby create or increase uncertainty. Critics often use legitimate scientific disagreements about narrow claims to reinforce the impression of uncertainty about general and widely accepted truths; for instance, that a given substance is harmful [3,4]. This impression of uncertainty about the evidence is then used to question particular policies [1,2,5,6].The negative effects of dissent on establishing public polices are present in cases in which the disagreements are scientifically well-grounded, but the significance of the dissent is misunderstood or blown out of proportion. A study showing that many factors affect the size of reef islands, to the effect that they will not necessarily be reduced in size as sea levels rise [7], was simplistically interpreted by the media as evidence that climate change will not have a negative impact on reef islands [8].In other instances, dissenting voices affect the public perception of and motivation to follow public-health policies or recommendations. For example, the publication of a now debunked link between the measles, mumps and rubella vaccine and autism [9], as well as the claim that the mercury preservative thimerosal, which was used in childhood vaccines, was a possible risk factor for autism [10,11], created public doubts about the safety of vaccinating children. Although later studies showed no evidence for these claims, doubts led many parents to reject vaccinations for their children, risking the herd immunity for diseases that had been largely eradicated from the industrialized world [12,13,14,15]. Many scientists have therefore come to regard dissent as problematic if it has the potential to affect public behaviour and policy-making. However, we argue that such concerns about dissent as an obstacle to public policy are both dangerous and misguided.Whether dissent is based on genuine scientific evidence or is unfounded, interested parties can use it to sow doubt, thwart public policies, promote problematic alternatives and lead the public to ignore sound advice. In response, scientists have adopted several strategies to limit these negative effects of dissent—masking dissent, silencing dissent and discrediting dissenters. The first strategy aims to present a united front to the public. Scientists mask existing disagreements among themselves by presenting only those claims or pieces of evidence about which they agree [16]. Although there is nearly universal agreement among scientists that average global temperatures are increasing, there are also legitimate disagreements about how much warming will occur, how quickly it will occur and the impact it might have [7,17,18,19]. As presenting these disagreements to the public probably creates more doubt and uncertainty than is warranted, scientists react by presenting only general claims [20].A second strategy is to silence dissenting views that might have negative consequences. This can take the form of self-censorship when scientists are reluctant to publish or publicly discuss research that might—incorrectly—be used to question existing scientific knowledge. For example, there are genuine disagreements about how best to model cloud formation, water vapour feedback and aerosols in general circulation paradigms, all of which have significant effects on the magnitude of global climate change predictions [17,19]. Yet, some scientists are hesitant to make these disagreements public, for fear that they will be accused of being denialists, faulted for confusing the public and policy-makers, censured for abating climate-change deniers, or criticized for undermining public policy [21,22,23,24].…there is growing concern that dissenting voices can have a negative effect on the public perception of science, on policy-making and public healthAnother strategy is to discredit dissenters, especially in cases in which the dissent seems to be ideologically motivated. This could involve publicizing the financial or political ties of the dissenters [2,6,25], which would call attention to their probable bias. In other cases, scientists might discredit the expertise of the dissenter. One such example concerns a 2007 study published in the Proceedings of the National Academy of Sciences USA, which claimed that cadis fly larvae consuming Bt maize pollen die at twice the rate of flies feeding on non-Bt maize pollen [26]. Immediately after publication, both the authors and the study itself became the target of relentless and sometimes scathing attacks from a group of scientists who were concerned that anti-GMO (genetically modified organism) interest groups would seize on the study to advance their agenda [27]. The article was criticized for its methodology and its conclusions, the Proceedings of the National Academy of Sciences USA was criticized for publishing the article and the US National Science Foundation was criticized for funding the study in the first place.Public policies, health advice and regulatory decisions should be based on the best available evidence and knowledge. As the public often lack the expertise to assess the quality of dissenting views, disagreements have the potential to cast doubt over the reliability of scientific knowledge and lead the public to question relevant policies. Strategies to block dissent therefore seem reasonable as a means to protect much needed or effective health policies, advice and regulations. However, even if the public were unable to evaluate the science appropriately, targeting dissent is not the most appropriate strategy to prevent negative side effects for several reasons. Chiefly, it contributes to the problems that the critics of dissent seek to address, namely increasing the cacophony of dissenting voices that only aim to create doubt. Focusing on dissent as a problematic activity sends the message to policy-makers and the public that any dissent undermines scientific knowledge. Reinforcing this false assumption further incentivizes those who seek merely to create doubt to thwart particular policies. Not surprisingly, think-tanks, industry and other organizations are willing to manufacture dissent simply to derail policies that they find economically or ideologically undesirable.Another danger of targeting dissent is that it probably stifles legitimate crucial voices that are needed for both advancing science and informing sound policy decisions. Attacking dissent makes scientists reluctant to voice genuine doubts, especially if they believe that doing so might harm their reputations, damage their careers and undermine prevailing theories or policies needed. For instance, a panel of scientists for the US National Academy of Sciences, when presenting a risk assessment of radiation in 1956, omitted wildly different predictions about the potential genetic harm of radiation [16]. They did not include this wide range of predictions in their final report precisely because they thought the differences would undermine confidence in their recommendations. Yet, this information could have been relevant to policy-makers. As such, targeting dissent as an obstacle to public policy might simply reinforce self-censorship and stifle legitimate and scientifically informed debate. If this happens, scientific progress is hindered.Second, even if the public has mistaken beliefs about science or the state of the knowledge of the science in question, focusing on dissent is not an effective way to protect public policy from false claims. It fails to address the presumed cause of the problem—the apparent lack of understanding of the science by the public. A better alternative would be to promote the public''s scientific literacy. If the public were educated to better assess the quality of the dissent and thus disregard instances of ideological, unsupported or unsound dissent, dissenting voices would not have such a negative effect. Of course, one might argue that educating the public would be costly and difficult, and that therefore, the public should simply listen to scientists about which dissent to ignore and which to consider. This is, however, a paternalistic attitude that requires the public to remain ignorant ‘for their own good''; a position that seems unjustified on many levels as there are better alternatives for addressing the problem.Moreover, silencing dissent, rather than promoting scientific literacy, risks undermining public trust in science even if the dissent is invalid. This was exemplified by the 2009 case of hacked e-mails from a computer server at the University of East Anglia''s Climate Research Unit (CRU). After the selective leaking of the e-mails, climate scientists at the CRU came under fire because some of the quotes, which were taken out of context, seemed to suggest that they were fudging data or suppressing dissenting views [28,29,30,31]. The stolen e-mails gave further ammunition to those opposing policies to reduce greenhouse emissions as they could use accusations of data ‘cover up'' as proof that climate scientists were not being honest with the public [29,30,31]. It also allowed critics to present climate scientists as conspirators who were trying to push a political agenda [32]. As a result, although there was nothing scientifically inappropriate revealed in the ‘climategate'' e-mails, it had the consequence of undermining the public''s trust in climate science [33,34,35,36].A significant amount of evidence shows that the ‘deficit model'' of public understanding of science, as described above, is too simplistic to account correctly for the public''s reluctance to accept particular policy decisions [37,38,39,40]. It ignores other important factors such as people''s attitudes towards science and technology, their social, political and ethical values, their past experiences and the public''s trust in governmental institutions [41,42,43,44]. The development of sound public policy depends not only on good science, but also on value judgements. One can agree with the scientific evidence for the safety of GMOs, for instance, but still disagree with the widespread use of GMOs because of social justice concerns about the developing world''s dependence on the interests of the global market. Similarly, one need not reject the scientific evidence about the harmful health effects of sugar to reject regulations on sugary drinks. One could rationally challenge such regulations on the grounds that informed citizens ought to be able to make free decisions about what they consume. Whether or not these value judgements are justified is an open question, but the focus on dissent hinders our ability to have that debate.Focusing on dissent as a problematic activity sends the message to policy-makers and the public that any dissent undermines scientific knowledgeAs such, targeting dissent completely fails to address the real issues. The focus on dissent, and the threat that it seems to pose to public policy, misdiagnoses the problem as one of the public misunderstanding science, its quality and its authority. It assumes that scientific or technological knowledge is the only relevant factor in the development of policy and it ignores the role of other factors, such as value judgements about social benefits and harms, and institutional trust and reliability [45,46]. The emphasis on dissent, and thus on scientific knowledge, as the only or main factor in public policy decisions does not give due attention to these legitimate considerations.Furthermore, by misdiagnosing the problem, targeting dissent also impedes more effective solutions and prevents an informed debate about the values that should guide public policy. By framing policy debates solely as debates over scientific facts, the normative aspects of public policy are hidden and neglected. Relevant ethical, social and political values fail to be publicly acknowledged and openly discussed.Controversies over GMOs and climate policies have called attention to the negative effects of dissent in the scientific community. Based on the assumption that the public''s reluctance to support particular policies is the result of their inability to properly understand scientific evidence, scientists have tried to limit dissenting views that create doubt. However, as outlined above, targeting dissent as an obstacle to public policy probably does more harm than good. It fails to focus on the real problem at stake—that science is not the only relevant factor in sound policy-making. Of course, we do not deny that scientific evidence is important to the develop.ment of public policy and behavioural decisions. Rather, our claim is that this role is misunderstood and often oversimplified in ways that actually contribute to problems in developing sound science-based policies.? Open in a separate windowInmaculada de Melo-MartínOpen in a separate windowKristen Intemann  相似文献   

14.
15.
Geoffrey Miller 《EMBO reports》2012,13(10):880-884
Runaway consumerism imposes social and ecological costs on humans in much the same way that runaway sexual ornamentation imposes survival costs and extinction risks on other animals.Sex and marketing have been coupled for a very long time. At the cultural level, their relationship has been appreciated since the 1960s ‘Mad Men'' era, when the sexual revolution coincided with the golden age of advertising, and marketers realized that ‘sex sells''. At the biological level, their interplay goes much further back to the Cambrian explosion around 530 million years ago. During this period of rapid evolutionary expansion, multicellular organisms began to evolve elaborate sexual ornaments to advertise their genetic quality to the most important consumers of all in the great mating market of life: the opposite sex.Maintaining the genetic quality of one''s offspring had already been a problem for billions of years. Ever since life originated around 3.7 billion years ago, RNA and DNA have been under selection to copy themselves as accurately as possible [1]. Yet perfect self-replication is biochemically impossible, and almost all replication errors are harmful rather than helpful [2]. Thus, mutations have been eroding the genomic stability of single-celled organisms for trillions of generations, and countless lineages of asexual organisms have suffered extinction through mutational meltdown—the runaway accumulation of copying errors [3]. Only through wildly profligate self-cloning could such organisms have any hope of leaving at least a few offspring with no new harmful mutations, so they could best survive and reproduce.Around 1.5 billion years ago, bacteria evolved the most basic form of sex to minimize mutation load: bacterial conjugation [4]. By swapping bits of DNA across the pilus (a tiny intercellular bridge) a bacterium can replace DNA sequences compromised by copying errors with intact sequences from its peers. Bacteria finally had some defence against mutational meltdown, and they thrived and diversified.Then, with the evolution of genuine sexual reproduction through meiosis, perhaps around 1.2 billion years ago, eukaryotes made a great advance in their ability to purge mutations. By combining their genes with a mate''s genes, they could produce progeny with huge genetic variety—and crucially with a wider range of mutation loads [5]. The unlucky offspring who happened to inherit an above-average number of harmful mutations from both parents would die young without reproducing, taking many mutations into oblivion with them. The lucky offspring who happened to inherit a below-average number of mutations from both parents would live long, prosper and produce offspring of higher genetic quality. Sexual recombination also made it easier to spread and combine the rare mutations that happened to be useful, opening the way for much faster evolutionary advances [6]. Sex became the foundation of almost all complex life because it was so good at both short-term damage limitation (purging bad mutations) and long-term innovation (spreading good mutations).Sex became the foundation of almost all complex life because it was so good at both short-term damage limitation […] and long-term innovation…Yet, single-celled organisms always had a problem with sex: they were not very good at choosing sexual partners with the best genes, that is, the lowest mutation loads. Given bacterial capabilities for chemical communication such as quorum-sensing [7], perhaps some prokaryotes and eukaryotes paid attention to short-range chemical cues of genetic quality before swapping genes. However, mating was mainly random before the evolution of longer-range senses and nervous systems.All of this changed profoundly with the Cambrian explosion, which saw organisms undergoing a genetic revolution that increased the complexity of gene regulatory networks, and a morphological revolution that increased the diversity of multicellular body plans. It was also a neurological and psychological revolution. As organisms became increasingly mobile, they evolved senses such as vision [8] and more complex nervous systems [9] to find food and evade predators. However, these new senses also empowered a sexual revolution, as they gave animals new tools for choosing sexual partners. Rather than hooking up randomly with the nearest mate, animals could now select mates based on visible cues of genetic quality such as body size, energy level, bright coloration and behavioural competence. By choosing the highest quality mates, they could produce higher quality offspring with lower mutation loads [10]. Such mate choice imposed selection on all of those quality cues to become larger, brighter and more conspicuous, amplifying them into true sexual ornaments: biological luxury goods such as the guppy''s tail and the peacock''s train that function mainly to impress and attract females [11]. These sexual ornaments evolved to have a complex genetic architecture, to capture a larger share of the genetic variation across individuals and to reveal mutation load more accurately [12].Ever since the Cambrian, the mating market for sexually reproducing animal species has been transformed to some degree into a consumerist fantasy world of conspicuous quality, status, fashion, beauty and romance. Individuals advertise their genetic quality and phenotypic condition through reliable, hard-to-fake signals or ‘fitness indicators'' such as pheromones, songs, ornaments and foreplay. Mates are chosen on the basis of who displays the largest, costliest, most precise, most popular and most salient fitness indicators. Mate choice for fitness indicators is not restricted to females choosing males, but often occurs in both sexes [13], especially in socially monogamous species with mutual mate choice such as humans [14].Thus, for 500 million years, animals have had to straddle two worlds in perpetual tension: natural selection and sexual selection. Each type of selection works through different evolutionary principles and dynamics, and each yields different types of adaptation and biodiversity. Neither fully dominates the other, because sexual attractiveness without survival is a short-lived vanity, whereas ecological competence without reproduction is a long-lived sterility. Natural selection shapes species to fit their geographical habitats and ecological niches, and favours efficiency in growth, foraging, parasite resistance, predator evasion and social competition. Sexual selection shapes each sex to fit the needs, desires and whims of the other sex, and favours conspicuous extravagance in all sorts of fitness indicators. Animal life walks a fine line between efficiency and opulence. More than 130,000 plant species also play the sexual ornamentation game, having evolved flowers to attract pollinators [15].The sexual selection world challenges the popular misconception that evolution is blind and dumb. In fact, as Darwin emphasized, sexual selection is often perceptive and clever, because animal senses and brains mediate mate choice. This makes sexual selection closer in spirit to artificial selection, which is governed by the senses and brains of human breeders. In so far as sexual selection shaped human bodies, minds and morals, we were also shaped by intelligent designers—who just happened to be romantic hominids rather than fictional gods [16].Thus, mate choice for genetic quality is analogous in many ways to consumer choice for brand quality [17]. Mate choice and consumer choice are both semi-conscious—partly instinctive, partly learned through trial and error and partly influenced by observing the choices made by others. Both are partly focused on the objective qualities and useful features of the available options, and partly focused on their arbitrary, aesthetic and fashionable aspects. Both create the demand that suppliers try to understand and fulfil, with each sex striving to learn the mating preferences of the other, and marketers striving to understand consumer preferences through surveys, focus groups and social media data mining.…single-celled organisms always had a problem with sex: they were not very good at choosing the sexual partners with the best genes…Mate choice and consumer choice can both yield absurdly wasteful outcomes: a huge diversity of useless, superficial variations in the biodiversity of species and the economic diversity of brands, products and packaging. Most biodiversity seems to be driven by sexual selection favouring whimsical differences across populations in the arbitrary details of fitness indicators, not just by naturally selected adaptation to different ecological niches [18]. The result is that within each genus, a species can be most easily identified by its distinct mating calls, sexual ornaments, courtship behaviours and genital morphologies [19], not by different foraging tactics or anti-predator defences. Similarly, much of the diversity in consumer products—such as shirts, cars, colleges or mutual funds—is at the level of arbitrary design details, branding, packaging and advertising, not at the level of objective product features and functionality.These analogies between sex and marketing run deep, because both depend on reliable signals of quality. Until recently, two traditions of signalling theory developed independently in the biological and social sciences. The first landmark in biological signalling theory was Charles Darwin''s analysis of mate choice for sexual ornaments as cues of good fitness and fertility in his book, The Descent of Man, and Selection in Relation to Sex (1871). Ronald Fisher analysed the evolution of mate preferences for fitness indicators in 1915 [20]. Amotz Zahavi proposed the ‘handicap principle'', arguing that only costly signals could be reliable, hard-to-fake indicators of genetic quality or phenotypic condition in 1975 [21]. Richard Dawkins and John Krebs applied game theory to analyse the reliability of animal signals, and the co-evolution of signallers and receivers in 1978 [22]. In 1990, Alan Grafen eventually proposed a formal model of the ‘handicap principle'' [23], and Richard Michod and Oren Hasson analysed ‘reliable indicators of fitness'' [24]. Since then, biological signalling theory has flourished and has informed research on sexual selection, animal communication and social behaviour.…new senses also empowered a sexual revolution […] Rather than hooking up randomly with the nearest mate, animals could now select mates based on visible cues of genetic quality…The parallel tradition of signalling theory in the social sciences and philosophy goes back to Aristotle, who argued that ethical and rational acts are reliable signals of underlying moral and cognitive virtues (ca 350–322 BC). Friedrich Nietzsche analysed beauty, creativity, morality and even cognition as expressions of biological vigour by using signalling logic (1872–1888). Thorstein Veblen proposed that conspicuous luxuries, quality workmanship and educational credentials act as reliable signals of wealth, effort and taste in The Theory of the Leisure Class (1899), The Instinct of Workmanship (1914) and The Higher Learning in America (1922). Vance Packard used signalling logic to analyse social class, runaway consumerism and corporate careerism in The Status Seekers (1959), The Waste Makers (1960) and The Pyramid Climbers (1962), and Ernst Gombrich analysed beauty in art as a reliable signal of the artist''s skill and effort in Art and Illusion (1977) and A Sense of Order (1979). Michael Spence developed formal models of educational credentials as reliable signals of capability and conscientiousness in Market Signalling (1974). Robert Frank used signalling logic to analyse job titles, emotions, career ambitions and consumer luxuries in Choosing the Right Pond (1985), Passions within Reason (1988), The Winner-Take-All-Society (1995) and Luxury Fever (2000).Evolutionary psychology and evolutionary anthropology have been integrating these two traditions to better understand many puzzles in human evolution that defy explanation in terms of natural selection for survival. For example, signalling theory has illuminated the origins and functions of facial beauty, female breasts and buttocks, body ornamentation, clothing, big game hunting, hand-axes, art, music, humour, poetry, story-telling, courtship gifts, charity, moral virtues, leadership, status-seeking, risk-taking, sports, religion, political ideologies, personality traits, adaptive self-deception and consumer behaviour [16,17,25,26,27,28,29].Building on signalling theory and sexual selection theory, the new science of evolutionary consumer psychology [30] has been making big advances in understanding consumer goods as reliable signals—not just signals of monetary wealth and elite taste, but signals of deeper traits such as intelligence, moral virtues, mating strategies and the ‘Big Five'' personality traits: openness, conscientiousness, agreeableness, extraversion and emotional stability [17]. These individual traits are deeper than wealth and taste in several ways: they are found in the other great apes, are heritable across generations, are stable across life, are important in all cultures and are naturally salient when interacting with mates, friends and kin [17,27,31]. For example, consumers seek elite university degrees as signals of intelligence; they buy organic fair-trade foods as signals of agreeableness; and they value foreign travel and avant-garde culture as signals of openness [17]. New molecular genetics research suggests that mutation load accounts for much of the heritable variation in human intelligence [32] and personality [33], so consumerist signals of these traits might be revealing genetic quality indirectly. If so, conspicuous consumption can be seen as just another ‘good-genes indicator'' favoured by mate choice.…sexual attractiveness without survival is a short-lived vanity, whereas ecological competence without reproduction is a long-lived sterilityIndeed, studies suggest that much conspicuous consumption, especially by young single people, functions as some form of mating effort. After men and women think about potential dates with attractive mates, men say they would spend more money on conspicuous luxury goods such as prestige watches, whereas women say they would spend more time doing conspicuous charity activities such as volunteering at a children''s hospital [34]. Conspicuous consumption by males reveals that they are pursuing a short-term mating strategy [35], and this activity is most attractive to women at peak fertility near ovulation [36]. Men give much higher tips to lap dancers who are ovulating [37]. Ovulating women choose sexier and more revealing clothes, shoes and fashion accessories [38]. Men living in towns with a scarcity of women compete harder to acquire luxuries and accumulate more consumer debt [39]. Romantic gift-giving is an important tactic in human courtship and mate retention, especially for men who might be signalling commitment [40]. Green consumerism—preferring eco-friendly products—is an effective form of conspicuous conservation, signalling both status and altruism [41].Findings such as these challenge traditional assumptions in economics. For example, ever since the Marginal Revolution—the development of economic theory during the 1870s—mainstream economics has made the ‘Rational Man'' assumption that consumers maximize their expected utility from their product choices, without reference to what other consumers are doing or desiring. This assumption was convenient both analytically—as it allowed easier mathematical modelling of markets and price equilibria—and ideologically in legitimizing free markets and luxury goods. However, new research from evolutionary consumer psychology and behavioural economics shows that consumers often desire ‘positional goods'' such as prestige-branded luxuries that signal social position and status through their relative cost, exclusivity and rarity. Positional goods create ‘positional externalities''—the harmful social side-effects of runaway status-seeking and consumption arms races [42].…biodiversity seems driven by sexual selection favouring whimsical differences […] Similarly […] diversity in consumer products […] is at the level of arbitrary design…These positional externalities are important because they undermine the most important theoretical justification for free markets—the first fundamental theorem of welfare economics, a formalization of Adam Smith''s ‘invisible hand'' argument, which says that competitive markets always lead to efficient distributions of resources. In the 1930s, the British Marxist biologists Julian Huxley and J.B.S. Haldane were already wary of such rationales for capitalism, and understood that runaway consumerism imposes social and ecological costs on humans in much the same way that runaway sexual ornamentation imposes survival costs and extinction risks on other animals [16]. Evidence shows that consumerist status-seeking leads to economic inefficiencies and costs to human welfare [42]. Runaway consumerism might be one predictable result of a human nature shaped by sexual selection, but we can display desirable traits in many other ways, such as green consumerism, conspicuous charity, ethical investment and through social media such as Facebook [17,43].Future work in evolutionary consumer psychology should give further insights into the links between sex, mutations, evolution and marketing. These links have been important for at least 500 million years and probably sparked the evolution of human intelligence, language, creativity, beauty, morality and ideology. A better understanding of these links could help us nudge global consumerist capitalism into a more sustainable form that imposes lower costs on the biosphere and yields higher benefits for future generations.? Open in a separate windowGeoffrey Miller  相似文献   

16.
17.
18.
19.
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear—to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.In principle, the erythropoietin receptor (EpoR) was discovered and described in red blood cell (RBC) progenitors, stimulating its proliferation and survival. Erythropoietin (Epo) is mainly synthesized in fetal liver and adult kidneys (13). Therefore, it was hypothesized that Epo act exclusively on erythroid progenitor cells. Accordingly, the target in humans for EpoR agonists drugs (such as recombinant erythropoietin [rhEpo], in general, called erythropoiesis-simulating agents) appears clear (that is, to treat anemia). However, evidence of a kaleidoscope of pleitropic actions of Epo has been provided (4,5). The Epo/EpoR axis research involved an initial journey from laboratory basic research to clinical therapeutics. However, as a consequence of clinical observations, basic research on Epo/EpoR comes back to expand its clinical therapeutic applicability.Although kidney and liver have long been considered the major sources of synthesis, Epo mRNA expression has also been detected in the brain (neurons and glial cells), lung, heart, bone marrow, spleen, hair follicles, reproductive tract and osteoblasts (617). Accordingly, EpoR was detected in other cells, such as neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells and cells of heart, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle (1827). Conversely, Sinclair et al.(28) reported data questioning the presence or function of EpoR on nonhematopoietic cells (endothelial, neuronal and cardiac cells), suggesting that further studies are needed to confirm the diversity of EpoR. Elliott et al.(29) also showed that EpoR is virtually undetectable in human renal cells and other tissues with no detectable EpoR on cell surfaces. These results have raised doubts about the preclinical basis for studies exploring pleiotropic actions of rhEpo (30).For the above-mentioned data, a return to basic research studies has become necessary, and many studies in animal models have been initiated or have already been performed. The effect of rhEpo administration on angiogenesis, myogenesis, shift in muscle fiber types and oxidative enzyme activities in skeletal muscle (4,31), cardiac muscle mitochondrial biogenesis (32), cognitive effects (31), antiapoptotic and antiinflammatory actions (3337) and plasma glucose concentrations (38) has been extensively studied. Neuro- and cardioprotection properties have been mainly described. Accordingly, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia).Unfortunately, the side effects of rhEpo are also evident. Epo is involved in regulating tumor angiogenesis (39) and probably in the survival and growth of tumor cells (25,40,41). rhEpo administration also induces serious side effects such as hypertension, polycythemia, myocardial infarction, stroke and seizures, platelet activation and increased thromboembolic risk, and immunogenicity (4246), with the most common being hypertension (47,48). A new generation of nonhematopoietic EpoR agonists drugs have hence been investigated and further developed in animals models. These compounds, namely asialoerythropoietin (asialoEpo) and carbamylated Epo (Cepo), were developed for preserving tissue-protective properties but reducing the erythropoietic activity of native Epo (49,50). These drugs will provide better outcome in ongoing clinical trials. The advantage of using nonhematopoietic Epo analogs is to avoid the stimulation of hematopoiesis and thereby the prevention of an increased hematocrit with a subsequent procoagulant status or increased blood pressure. In this regard, a new study by van Rijt et al. has shed new light on this topic (51). A new nonhematopoietic EpoR agonist analog named ARA 290 has been developed, promising cytoprotective capacities to prevent renal ischemia/reperfusion injury (51). ARA 290 is a short peptide that has shown no safety concerns in preclinical and human studies. In addition, ARA 290 has proven efficacious in cardiac disorders (52,53), neuropathic pain (54) and sarcoidosis-induced chronic neuropathic pain (55). Thus, ARA 290 is a novel nonhematopoietic EpoR agonist with promising therapeutic options in treating a wide range of pathologies and without increased risks of cardiovascular events.Overall, this new generation of EpoR agonists without the erythropoietic activity of Epo while preserving tissue-protective properties of Epo will provide better outcomes in ongoing clinical trials (49,50). Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases, such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.  相似文献   

20.
Background:Otitis media with effusion is a common problem that lacks an evidence-based nonsurgical treatment option. We assessed the clinical effectiveness of treatment with a nasal balloon device in a primary care setting.Methods:We conducted an open, pragmatic randomized controlled trial set in 43 family practices in the United Kingdom. Children aged 4–11 years with a recent history of ear symptoms and otitis media with effusion in 1 or both ears, confirmed by tympanometry, were allocated to receive either autoinflation 3 times daily for 1–3 months plus usual care or usual care alone. Clearance of middle-ear fluid at 1 and 3 months was assessed by experts masked to allocation.Results:Of 320 children enrolled, those receiving autoinflation were more likely than controls to have normal tympanograms at 1 month (47.3% [62/131] v. 35.6% [47/132]; adjusted relative risk [RR] 1.36, 95% confidence interval [CI] 0.99 to 1.88) and at 3 months (49.6% [62/125] v. 38.3% [46/120]; adjusted RR 1.37, 95% CI 1.03 to 1.83; number needed to treat = 9). Autoinflation produced greater improvements in ear-related quality of life (adjusted between-group difference in change from baseline in OMQ-14 [an ear-related measure of quality of life] score −0.42, 95% CI −0.63 to −0.22). Compliance was 89% at 1 month and 80% at 3 months. Adverse events were mild, infrequent and comparable between groups.Interpretation:Autoinflation in children aged 4–11 years with otitis media with effusion is feasible in primary care and effective both in clearing effusions and improving symptoms and ear-related child and parent quality of life. Trial registration: ISRCTN, No. 55208702.Otitis media with effusion, also known as glue ear, is an accumulation of fluid in the middle ear, without symptoms or signs of an acute ear infection. It is often associated with viral infection.13 The prevalence rises to 46% in children aged 4–5 years,4 when hearing difficulty, other ear-related symptoms and broader developmental concerns often bring the condition to medical attention.3,5,6 Middle-ear fluid is associated with conductive hearing losses of about 15–45 dB HL.7 Resolution is clinically unpredictable,810 with about a third of cases showing recurrence.11 In the United Kingdom, about 200 000 children with the condition are seen annually in primary care.12,13 Research suggests some children seen in primary care are as badly affected as those seen in hospital.7,9,14,15 In the United States, there were 2.2 million diagnosed episodes in 2004, costing an estimated $4.0 billion.16 Rates of ventilation tube surgery show variability between countries,1719 with a declining trend in the UK.20Initial clinical management consists of reasonable temporizing or delay before considering surgery.13 Unfortunately, all available medical treatments for otitis media with effusion such as antibiotics, antihistamines, decongestants and intranasal steroids are ineffective and have unwanted effects, and therefore cannot be recommended.2123 Not only are antibiotics ineffective, but resistance to them poses a major threat to public health.24,25 Although surgery is effective for a carefully selected minority,13,26,27 a simple low-cost, nonsurgical treatment option could benefit a much larger group of symptomatic children, with the purpose of addressing legitimate clinical concerns without incurring excessive delays.Autoinflation using a nasal balloon device is a low-cost intervention with the potential to be used more widely in primary care, but current evidence of its effectiveness is limited to several small hospital-based trials28 that found a higher rate of tympanometric resolution of ear fluid at 1 month.2931 Evidence of feasibility and effectiveness of autoinflation to inform wider clinical use is lacking.13,28 Thus we report here the findings of a large pragmatic trial of the clinical effectiveness of nasal balloon autoinflation in a spectrum of children with clinically confirmed otitis media with effusion identified from primary care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号