首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In the past few years, insensitive attentions have been drawn to wearable and flexible energy storage devices/systems along with the emergence of wearable electronics. Much progress has been achieved in developing flexible electrochemical energy storage devices with high end‐use performance. However, challenges still remain in well balancing the electrochemical properties, mechanical properties, and the processing technologies. In this review, a specific perspective on the development of textile‐based electrochemical energy storage devices (TEESDs), in which textile components and technologies are utilized to enhance the energy storage ability and mechanical properties of wearable electronic devices, is provided. The discussion focuses on the material preparation and characteristics, electrode and device fabrication strategies, electrochemical performance and metrics, wearable compatibility, and fabrication scalability of TEESDs including textile‐based supercapacitors and lithium‐ion batteries.  相似文献   

2.
《IRBM》2022,43(5):511-519
ObjectivesWith the rapid evolution and technology advancement, the healthcare sector is evolving day by day. It is taking advantage of different technologies such as Internet of things and Blockchain. Several applications related to daily healthcare activities are adopting the use of these technologies. In this paper, we present a review in which we group different healthcare applications that integrate the Internet of things and Blockchain in their systems.Material and methodsA review study about the integration of IoT and Blockchain in healthcare systems was conducted. We searched the databases ScienceDirect, IEEE Xplore, Google Scholar and ACM Digital Library.ResultsThis review focuses on categorizing the use cases of IoT and Blockchain in the healthcare sector. The study listed 6 applications in medical services, namely, remote patient monitoring, electronic medical records management, disease prediction, patient tracking, drug traceability and fighting infectious disease especially COVID-19. The paper also investigates the challenges associated with the adoption of the Blockchain technology in healthcare IoT-based systems and some of the existing solutions. It also introduces some future research directions.ConclusionThe survey of the use cases of IoT and Blockchain in the healthcare sector will serve as a state of the art for future researches. In addition, the paper gives some directions to new possible researches that could help to revolutionize the healthcare sector by using other technologies such as artificial intelligence, big data, fog and cloud computing.  相似文献   

3.
归纳、总结健康医疗可穿戴设备采集的数据内容,重点绘制健康医疗可穿戴设备的数据流动环节,并将数据流动划分为采集、上传、集成交互以及信息反馈等主要环节,并分析各主要环节中以及其他方面存在及潜在的数据安全与隐私问题,希望能为健康医疗可穿戴设备的数据隐私保护机制提供不同角度的理论参考。  相似文献   

4.
Ahrens CH  Brunner E  Hafen E  Aebersold R  Basler K 《Fly》2007,1(3):182-186
Proteomic analyses are critically important for systems biology because important aspects related to the structure, function and control of biological systems are only amenable by direct protein measurements. It has become apparent that the current proteomics technologies are unlikely to allow routine, quantitative measurements of whole proteomes. We have therefore suggested and largely implemented a two-step strategy for quantitative proteome analysis. In a first step, the discovery phase, the proteome observable by mass spectrometry is extensively analyzed. The resulting proteome catalog can then be used to select peptides specific to only one protein, so-called proteotypic peptides (PTPs). It represents the basis to realize sensitive, robust and reproducible measurements based on targeted mass spectrometry of these PTPs in a subsequent scoring phase. In this Extra View we describe the need for such proteome catalogs and their multiple benefits for catalyzing the shift towards targeted quantitative proteomic analysis and beyond. We use the Insulin signaling cascade as a representative example to illustrate the limitations of currently used proteomics approaches for the specific analysis of individual pathway components, and describe how the recently published Drosophila proteome catalog already helped to overcome many of these limitations.  相似文献   

5.
Continuous monitoring of spine movement function could enhance our understanding of low back pain development. Wearable technologies have gained popularity as promising alternative to laboratory systems in allowing ambulatory movement analysis. This paper aims to review the state of art of current use of wearable technology to assess spine kinematics and kinetics.Four electronic databases and reference lists of relevant articles were searched to find studies employing wearable technologies to assess the spine in adults performing dynamic movements. Two reviewers independently identified relevant papers. Customised data extraction and quality appraisal form were developed to extrapolate key details and identify risk of biases of each study. Twenty-two articles were retrieved that met the inclusion criteria: 12 were deemed of medium quality (score 33.4–66.7%), and 10 of high quality (score >66.8%). The majority of articles (19/22) reported validation type studies. Only 6 reported data collection in real-life environments. Multiple sensors type were used: electrogoniometers (3/22), strain gauges based sensors (3/22), textile piezoresistive sensor (1/22) and accelerometers often used with gyroscopes and magnetometers (15/22). Two sensors units were mainly used and placing was commonly reported on the spine lumbar and sacral regions. The sensors were often wired to data transmitter/logger resulting in cumbersome systems. Outcomes were mostly reported relative to the lumbar segment and in the sagittal plane, including angles, range of motion, angular velocity, joint moments and forces.This review demonstrates the applicability of wearable technology to assess the spine, although this technique is still at an early stage of development.  相似文献   

6.
Energy generation and consumption have always been an important component of social development. Interests in this field are beginning to shift to indoor photovoltaics (IPV) which can serve as power sources under low light conditions to meet the energy needs of rapidly growing fields, such as intelligence gathering and information processing which usually operate via the Internet‐of‐things (IoT). Since the power requirements for this purpose continue to decrease, IPV systems under low light may facilitate the realization of self‐powered high‐tech electronic devices connected through the IoT. This review discusses and compares the characteristics of different types of IPV devices such as those based on silicon, dye, III‐V semiconductors, organic compounds, and halide perovskites. Among them, specific attention is paid to perovskite photovoltaics which may potentially become a high performing IPV system due to the fascinating photophysics of the halide perovskite active layer. The limitations of such indoor application as they relate to the toxicity, stability, and electronic structure of halide perovskites are also discussed. Finally, strategies which could produce highly functional, nontoxic, and stable perovskite photovoltaics devices for indoor applications are proposed.  相似文献   

7.
Metabolomics, including both targeted and global metabolite profiling strategies, is fast becoming the approach of choice across a broad range of sciences including systems biology, drug discovery, molecular and cell biology, and other medical and agricultural sciences. New analytical and bioinformatics technologies and techniques are continually being created or optimized, significantly increasing the crossdisciplinary capabilities of this new biology. The metabolomes of medicinal plants are particularly a valuable natural resource for the evidence-based development of new phytotherapeutics and nutraceuticals. Comparative metabolomics platforms are evolving into novel technologies for monitoring disease development, drug metabolism, and chemical toxicology. An efficient multidisciplinary marriage of these emerging metabolomics techniques with agricultural biotechnology will greatly benefit both basic and applied medical research.  相似文献   

8.
《IRBM》2020,41(3):172-183
The rapid development of the wearable electrocardiogram monitoring equipment increases the requirements for R peak detection in wearable devices. An improved method called ISC algorithm is proposed with high anti-interference ability for R peak detection in wearable devices based on a simple basic algorithm called SC algorithm. The proposed method is characterized by using the updated amplitude selection threshold, updated slope comparison threshold and RR interval judgement to reduce false positives and false negatives. For data from MIT-BIH Arrhythmia Database, the positive predictivity P+ of ISC algorithm can reach 99.12%, and the sensitivity Se of ISC algorithm is more than 95%. For MIT-BIH Noise Stress Test Database, the accuracy of ISC algorithm for both sensitivity Se and positive predictivity P+ can exceed 94% under three common noise, baseline wander, muscle artifact, and electrode motion artifact, where the positive predictivity P+ of ISC algorithm is 44.46% higher than that of SC algorithm on average. For wearable devices in exercise, even under the exercise intensity of 7 km per hour, the average positive predictivity P+ of ISC algorithm is 99.32%, which is 60.93% higher than that of SC algorithm. The high anti-interference ability shows that ISC algorithm is suitable for R peak detection in wearable devices.  相似文献   

9.
We propose the term "synthetic tissue biology" to describe the use of engineered tissues to form biological systems with metazoan-like complexity. The increasing maturity of tissue engineering is beginning to render this goal attainable. As in other synthetic biology approaches, the perspective is bottom-up; here, the premise is that complex functional phenotypes (on par with those in whole metazoan organisms) can be effected by engineering biology at the tissue level. To be successful, current efforts to understand and engineer multicellular systems must continue, and new efforts to integrate different tissues into a coherent structure will need to emerge. The fruits of this research may include improved understanding of how tissue systems can be integrated, as well as useful biomedical technologies not traditionally considered in tissue engineering, such as autonomous devices, sensors, and manufacturing.  相似文献   

10.
Medical devices are an important and growing aspect of healthcare provision and are increasing in complexity to meet established and emerging patient needs. Terminal sterilization plays a vital role in the provision of safe medical devices. While terminal sterilization technologies for medical devices include multiple radiation options, ethylene oxide remains the predominant nonthermal gaseous option, sterilizing c. 50% of all manufactured devices. Vaporized hydrogen peroxide (abbreviated VH2O2 by the International Organization for Standardization) is currently deployed for clinical sterilization applications, where its performance characteristics appear aligned to requirements, constituting a viable alternative low-temperature process for terminal processing of medical devices. However, VH2O2 has operational limitations that create technical challenges for industrial-scale adoption. This timely review provides a succinct overview of VH2O2 in gaseous sterilization and addresses its applicability for terminal sterilization of medical devices. It also describes underappreciated factors such as the occurrence of nonlinear microbial inactivation kinetic plots that may dictate a need to develop a new standard approach to validate VH2O2 for terminal sterilization of medical devices.  相似文献   

11.
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle–DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle–DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle–DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle–DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology.  相似文献   

12.
Tumor tissue processing methodologies in combination with data-independent acquisition mass spectrometry (DIA-MS) have emerged that can comprehensively analyze the proteome of multiple tumor samples accurately and reproducibly. Increasing recognition and adoption of these technologies has resulted in a tranche of studies providing novel insights into cancer classification systems, functional tumor biology, cancer biomarkers, treatment response and drug targets. Despite this, with some limited exceptions, MS-based proteomics has not yet been implemented in routine cancer clinical practice. Here, we summarize the use of DIA-MS in studies that may pave the way for future clinical cancer applications, and highlight the role of alternative MS technologies and multi-omic strategies. We discuss limitations and challenges of studies in this field to date and propose steps for integrating proteomic data into the cancer clinic.  相似文献   

13.
Wearable health tech provides doctors with the ability to remotely supervise their patients'' wellness. It also makes it much easier to authorize someone else to take appropriate actions to ensure the person''s wellness than ever before. Information Technology may soon change the way medicine is practiced, improving the performance, while reducing the price of healthcare. We analyzed the secrecy demands of wearable devices, including Smartphone, smart watch and their computing techniques, that can soon change the way healthcare is provided. However, before this is adopted in practice, all devices must be equipped with sufficient privacy capabilities related to healthcare service. In this paper, we formulated a new improved conceptual framework for wearable healthcare systems. This framework consists of ten principles and nine checklists, capable of providing complete privacy protection package to wearable device owners. We constructed this framework based on the analysis of existing mobile technology, the results of which are combined with the existing security standards. The approach also incorporates the market share percentage level of every app and its respective OS. This framework is evaluated based on the stringent CIA and HIPAA principles for information security. This evaluation is followed by testing the capability to revoke rights of subjects to access objects and ability to determine the set of available permissions for a particular subject for all models Finally, as the last step, we examine the complexity of the required initial setup.  相似文献   

14.
Hayyolalam  Vahideh  Otoum  Safa  Özkasap  Öznur 《Cluster computing》2022,25(3):1695-1713

Edge intelligence has become popular recently since it brings smartness and copes with some shortcomings of conventional technologies such as cloud computing, Internet of Things (IoT), and centralized AI adoptions. However, although utilizing edge intelligence contributes to providing smart systems such as automated driving systems, smart cities, and connected healthcare systems, it is not free from limitations. There exist various challenges in integrating AI and edge computing, one of which is addressed in this paper. Our main focus is to handle the adoption of AI methods on resource-constrained edge devices. In this regard, we introduce the concept of Edge devices as a Service (EdaaS) and propose a quality of service (QoS) and quality of experience (QoE)-aware dynamic and reliable framework for AI subtasks composition. The proposed framework is evaluated utilizing three well-known meta-heuristics in terms of various metrics for a connected healthcare application scenario. The experimental results confirm the applicability of the proposed framework. Moreover, the results reveal that black widow optimization (BWO) can handle the issue more efficiently compared to particle swarm optimization (PSO) and simulated annealing (SA). The overall efficiency of BWO over PSO is 95%, and BWO outperforms SA with 100% efficiency. It means that BWO prevails SA and PSO in all and 95% of the experiments, respectively.

  相似文献   

15.
Varner VD  Taber LA 《Bio Systems》2012,109(3):412-419
Researchers in developmental biology are increasingly recognizing the value of theoretical models in studies of morphogenesis. However, creating and testing realistic quantitative models for morphogenetic processes can be an extremely challenging task. The focus of this paper is on models for the mechanics of morphogenesis. Models for these problems often must include large changes in geometry, leading to highly nonlinear problems with the possibility of multiple solutions that must be sorted out using experimental data. Here, we illustrate our approach to these problems using the specific example of head fold formation in the early chick embryo. The interplay between experimental and theoretical results is emphasized throughout, as the model is gradually refined. Some of the limitations inherent in theoretical/computational modeling of biological systems are also discussed.  相似文献   

16.
17.
The use of wearable systems for monitoring vital parameters has gained wide popularity in several medical fields. The focus of the present study is the experimental assessment of a smart textile based on 12 fiber Bragg grating sensors for breathing monitoring and thoraco‐abdominal motion pattern analysis. The feasibility of the smart textile for monitoring several temporal respiratory parameters (ie, breath‐by‐breath respiratory period, breathing frequency, duration of inspiratory and expiratory phases), volume variations of the whole chest wall and of its compartments is performed on 8 healthy male volunteers. Values gathered by the textile are compared to the data obtained by a motion analysis system, used as the reference instrument. Good agreement between the 2 systems on both respiratory period (bias of 0.01 seconds), breathing frequency (bias of ?0.02 breaths/min) and tidal volume (bias of 0.09 L) values is demonstrated. Smart textile shows good performance in the monitoring of thoraco‐abdominal pattern and its variation, as well.   相似文献   

18.
19.
Data integration is needed in order to cope with the huge amounts of biological information now available and to perform data mining effectively. Current data integration systems have strict limitations, mainly due to the number of resources, their size and frequency of updates, their heterogeneity and distribution on the Internet. Integration must therefore be achieved by accessing network services through flexible and extensible data integration and analysis network tools. EXtensible Markup Language (XML), Web Services and Workflow Management Systems (WMS) can support the creation and deployment of such systems. Many XML languages and Web Services for bioinformatics have already been designed and implemented and some WMS have been proposed. In this article, we review a methodology for data integration in biomedical research that is based on these technologies. We also briefly describe some of the available WMS and discuss the current limitations of this methodology and the ways in which they can be overcome.  相似文献   

20.
蛋白质是细胞各类代谢和调控等生命功能的执行者,也是致病因子、药物等对机体作用的重要靶分子.研究蛋白质表达是理解生命现象、疾病进程和药物作用的基础.临床上常规检测方法需要大型仪器支持,但随着医学事业的发展,即时检测(POCT,也称现场检测、床旁检测)成为重要的发展趋势.POCT可以改善患者和医生之间的互动方式,建立一种积...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号