首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of uncertainties and variations in data represents a remaining challenge for life cycle assessment (LCA). Moreover, a full analysis may be complex, time‐consuming, and implemented mainly when a product design is already defined. Structured under‐specification, a method developed to streamline LCA, is here proposed to support the residential building design process, by quantifying environmental impact when specific information on the system under analysis cannot be available. By means of structured classifications of materials and building assemblies, it is possible to use surrogate data during the life cycle inventory phase and thus to obtain environmental impact and associated uncertainty. The bill of materials of a building assembly can be specified using minimal detail during the design process. The low‐fidelity characterization of a building assembly and the uncertainty associated with these low levels of fidelity are systematically quantified through structured under‐specification using a structured classification of materials. The analyst is able to use this classification to quantify uncertainty in results at each level of specificity. Concerning building assemblies, an average decrease of uncertainty of 25% is observed at each additional level of specificity within the data structure. This approach was used to compare different exterior wall options during the early design process. Almost 50% of the comparisons can be statistically differentiated at even the lowest level of specificity. This data structure is the foundation of a streamlined approach that can be applied not only when a complete bill of materials is available, but also when fewer details are known.  相似文献   

2.

Purpose

This paper uses a dynamic life cycle assessment (DLCA) approach and illustrates the potential importance of the method using a simplified case study of an institutional building. Previous life cycle assessment (LCA) studies have consistently found that energy consumption in the use phase of a building is dominant in most environmental impact categories. Due to the long life span of buildings and potential for changes in usage patterns over time, a shift toward DLCA has been suggested.

Methods

We define DLCA as an approach to LCA which explicitly incorporates dynamic process modeling in the context of temporal and spatial variations in the surrounding industrial and environmental systems. A simplified mathematical model is used to incorporate dynamic information from the case study building, temporally explicit sources of life cycle inventory data and temporally explicit life cycle impact assessment characterization factors, where available. The DLCA model was evaluated for the historical and projected future environmental impacts of an existing institutional building, with additional scenario development for sensitivity and uncertainty analysis of future impacts.

Results and discussion

Results showed that overall life cycle impacts varied greatly in some categories when compared to static LCA results, generated from the temporal perspective of either the building's initial construction or its recent renovation. From the initial construction perspective, impacts in categories related to criteria air pollutants were reduced by more than 50 % when compared to a static LCA, even though nonrenewable energy use increased by 15 %. Pollution controls were a major reason for these reductions. In the future scenario analysis, the baseline DLCA scenario showed a decrease in all impact categories compared with the static LCA. The outer bounds of the sensitivity analysis varied from slightly higher to strongly lower than the static results, indicating the general robustness of the decline across the scenarios.

Conclusions

These findings support the use of dynamic modeling in life cycle assessment to increase the relevance of results. In some cases, decision making related to building design and operations may be affected by considering the interaction of temporally explicit information in multiple steps of the LCA. The DLCA results suggest that in some cases, changes during a building's lifetime can influence the LCA results to a greater degree than the material and construction phases. Adapting LCA to a more dynamic approach may increase the usefulness of the method in assessing the performance of buildings and other complex systems in the built environment.  相似文献   

3.
Background, aim, and scope  To minimize the environmental impacts of construction and simultaneously move closer to sustainable development in the society, the life cycle assessment of buildings is essential. This article provides an environmental life cycle assessment (LCA) of a typical commercial office building in Thailand. Almost all commercial office buildings in Thailand follow a similar structural, envelope pattern as well as usage patterns. Likewise, almost every office building in Thailand operates on electricity, which is obtained from the national grid which limits variability. Therefore, the results of the single case study building are representative of commercial office buildings in Thailand. Target audiences are architects, building construction managers and environmental policy makers who are interested in the environmental impact of buildings. Materials and methods  In this work, a combination of input–output and process analysis was used in assessing the potential environmental impact associated with the system under study according to the ISO14040 methodology. The study covered the whole life cycle including material production, construction, occupation, maintenance, demolition, and disposal. The inventory data was simulated in an LCA model and the environmental impacts for each stage computed. Three environmental impact categories considered relevant to the Thailand context were evaluated, namely, global warming potential, acidification potential, and photo-oxidant formation potential. A 50-year service time was assumed for the building. Results  The results obtained showed that steel and concrete are the most significant materials both in terms of quantities used, and also for their associated environmental impacts at the manufacturing stage. They accounted for 24% and 47% of the global warming potential, respectively. In addition, of the total photo-oxidant formation potential, they accounted for approximately 41% and 30%; and, of the total acidification potential, 37% and 42%, respectively. Analysis also revealed that the life cycle environmental impacts of commercial buildings are dominated by the operation stage, which accounted for approximately 52% of the total global warming potential, about 66% of the total acidification potential, and about 71% of the total photo-oxidant formation potential, respectively. The results indicate that the principal contributor to the impact categories during the operation phase were emissions related to fossil fuel combustion, particularly for electricity production. Discussion  The life cycle environmental impacts of commercial buildings are dominated by the operation stage, especially electricity consumption. Significant reductions in the environmental impacts of buildings at this stage can be achieved through reducing their operating energy. The results obtained show that increasing the indoor set-point temperature of the building by 2°C, as well as the practice of load shedding, reduces the environmental burdens of buildings at the operation stage. On a national scale, the implementation of these simple no-cost energy conservation measures have the potential to achieve estimated reductions of 10.2% global warming potential, 5.3% acidification potential, and 0.21% photo-oxidant formation potential per year, respectively, in emissions from the power generation sector. Overall, the measures could reduce approximately 4% per year from the projected global warming potential of 211.51 Tg for the economy of Thailand. Conclusions  Operation phase has the highest energy and environmental impacts, followed by the manufacturing phase. At the operation phase, significant reductions in the energy consumption and environmental impacts can be achieved through the implementation of simple no-cost energy conservation as well as energy efficiency strategies. No-cost energy conservation policies, which minimize energy consumption in commercial buildings, should be encouraged in combination with already existing energy efficiency measures of the government. Recommendations and perspectives  In the long run, the environmental impacts of buildings will need to be addressed. Incorporation of environmental life cycle assessment into the current building code is proposed. It is difficult to conduct a full and rigorous life cycle assessment of an office building. A building consists of many materials and components. This study made an effort to access reliable data on all the life cycle stages considered. Nevertheless, there were a number of assumptions made in the study due to the unavailability of adequate data. In order for life cycle modeling to fulfill its potential, there is a need for detailed data on specific building systems and components in Thailand. This will enable designers to construct and customize LCAs during the design phase to enable the evaluation of performance and material tradeoffs across life cycles without the excessive burden of compiling an inventory. Further studies with more detailed, reliable, and Thailand-specific inventories for building materials are recommended.  相似文献   

4.

Purpose

Sustainable development aims to enhance the quality of life by improving the social, economic and environmental conditions for present and future generations. A sustainable engineering decision-making strategy for design and assessment of construction works (i.e., civil engineering and buildings) should take into account considerations regarding the society, the economy and the environment. This study presents a novel approach for the life cycle assessment (LCA) of a case-study building subjected to seismic actions during its service life, accounting for structural reliability.

Methods

A methodology is presented that evaluates the time-dependent probability of exceeding a limit state considering the uncertainty in the representation of seismic action. By employing this methodology, the earthquake-induced damages are related to the environmental and social losses caused by the occurrence of the earthquake. A LCA of a case-study building accounting for the time-dependent seismic reliability is conducted using a damage-oriented LCA approach.

Results and discussion

The contributions of the different life cycle phases to the total environmental impact related to the building lifetime are in agreement with previous results in this field of study. However, the LCA results revealed significant risk-based contributions for the rehabilitation phase due to the induced damage resulting in seismic events. Particularly, the rehabilitation phase is expected to contribute to the total environmental impact with around the 25 % of the initial environmental impact load (related to the pre-use phase) as a consequence of seismic damage.

Conclusions and recommendations

The probability of occurrence of seismic events affects the LCA results for various life cycle phases of a building in terms of all the indicators adopted in the analysis. The time-dependent probability of collapse in a year can represent a benchmark indicator for human safety in the context of social sustainability for the building sector. The proposed approach can be implemented in a sustainable decision-making tool for design and assessment.  相似文献   

5.
Various green building rating systems (GBRSs) have been proposed to reduce the environmental impact of buildings. However, these GBRSs, such as Leadership in Energy and Environmental Design (LEED) v4, are primarily oriented toward a building's use stage energy consumption. Their application in contexts involving a high share of renewable energy, and hence a low‐impact electricity mix, can result in undesirable side effects. This paper aims to investigate such effects, based on an existing office building in Quebec (Canada), where more than 95% of the electricity consumption mix is renewable. This paper compares the material impacts from a low‐energy context building to material considerations in LEED v4. In addition to their contributions to the building impacts, material impacts are also defined by their potential to change impacts with different material configurations. Life cycle assessment (LCA) impacts were evaluated using Simapro 8.2, the ecoinvent 3.1 database, and the IMPACT 2002+ method. The building LCA results indicated higher environmental impact contributions from materials (>50%) compared to those from energy consumption. This is in contrast with the LEED v4 rating system, as it did not seem to be as effective in capturing such effects. The conclusions drawn from this work will help stakeholders from the buildings sector to have a better understanding of building environmental profiles, and the limitations of LEED v4 in contexts involving a low‐impact energy mix. In addition, this critical assessment can be used to further improve the LEED certification system.  相似文献   

6.

Purpose  

Many life cycle assessment (LCA) studies do not adequately address the actual lifetime of buildings and building products, but rather assume a typical value. The goal of this study was to determine the impact of lifetime on residential building LCA results. Including accurate lifetime data into LCA allows a better understanding of a product’s environmental impact that would ultimately enhance the accuracy of LCA results.  相似文献   

7.
Life cycle assessment (LCA) is a quantitative tool used to evaluate the environmental impacts of products or processes. With respect to buildings, LCA can be used to evaluate the environmental impacts of an entire building's life cycle. Currently LCA in the building area is used in a limited capacity, primarily to select building products. In order to determine the causality for the lack of whole‐building LCAs, focus groups with members of the architecture, engineering, and construction (AEC) communities were held. This article investigates the current level of knowledge of LCA in the AEC community and then discusses the benefits and barriers to the practice of LCA. In summary, the goal of the research was to identify why LCA is not used to its fullest potential in a whole‐building LCA. In an open forum and moderated setting, focus group participants were asked individually to self‐identify their experience with LCA, a brief education session on LCA was held, and then benefits and barriers to LCA were discussed. The focus group sessions were transcribed and systematically coded by social researchers in order to analyze the results. Hybrid flow and radar charts were developed. From the focus group results, the most important benefit to LCA was “provides information about environmental impacts.” The results did not identify a prominent barrier; however, building‐related metrics were ascertained to be one of the more crucial barriers. The benefits and barriers classified by this analysis will be utilized to develop a subsequent online survey to further understand the LCA and AEC community.  相似文献   

8.
Purpose

Energy consumption of buildings is one of the major drivers of environmental impacts. Life cycle assessment (LCA) may support the assessment of burdens and benefits associated to eco-innovations aiming at reducing these environmental impacts. Energy efficiency policies however typically focus on the meso- or macro-scale, while interventions are typically taken at the micro-scale. This paper presents an approach that bridges this gap by using the results of energy simulations and LCA studies at the building level to estimate the effect of micro-scale eco-innovations on the macro-scale, i.e. the housing stock in Europe.

Methods

LCA and dynamic energy simulations are integrated to accurately assess the life cycle environmental burdens and benefits of eco-innovation measures at the building level. This allows quantitatively assessing the effectiveness of these measures to lower the energy use and environmental impact of buildings. The analysis at this micro-scale focuses on 24 representative residential buildings within the EU. For the upscaling to the EU housing stock, a hybrid approach is used. The results of the micro-scale analysis are upscaled to the EU housing stock scale by adopting the eco-innovation measures to (part of) the EU building stock (bottom–up approach) and extrapolating the relative impact reduction obtained for the reference buildings to the baseline stock model. The reference buildings in the baseline stock model have been developed by European Commission-Joint Research Centre based on a statistical analysis (top–down approach) of the European housing stock. The method is used to evaluate five scenarios covering various aspects: building components (building envelope insulation), technical installations (renewable energy), user behaviour (night setback of the setpoint temperature), and a combined scenario.

Results and discussion

Results show that the proposed combination of bottom–up and top–down approaches allow accurately assessing the impact of eco-innovation measures at the macro-scale. The results indicate that a combination of policy measures is necessary to lower the environmental impacts of the building stock to a significative extent.

Conclusions

Interventions addressing energy efficiency at building level may lead to the need of a trade-off between resource efficiency and environmental impacts. LCA integrated with dynamic energy simulation may help unveiling the potential improvements and burdens associated to eco-innovations.

  相似文献   

9.

Purpose

Sustainability assessments of buildings using the life cycle approach have become more and more common. This includes the assessment of the environmental performance of buildings. However, the influence of the construction products used for the fabric, the finishing, and the technical building equipment of buildings has hardly been described in literature. For this reason, we evaluated the influence of the technical building equipment and its impact on the environment for different residential buildings.

Materials and methods

Five residential buildings were evaluated by applying the methodology of life cycle assessment (LCA) (ISO14040) expressed using quantitative assessment categories according to prEN15978.

Results and discussion

Results show that the optimization of energy performance has already reached a high level in Austria, so that the overall potential for possible improvements is quite low. Especially in low-energy and passive?Chouse-standard residential buildings, the limits for energy optimization in the use phase have mostly been achieved. In contrast to this, the integrated LCA (iLCA) findings attribute a high optimization potential to the construction products used for the technical building equipment as well as to the building fabric and finishing. Additionally, the passive house shows the lowest contribution of the technical building equipment on the overall LCA results.

Conclusions

The iLCA findings suggest that it is recommended to include the technical building equipment for future assessments of the environmental performance of buildings. It is also suggested to use a broad number of environmental indicators for building LCA.  相似文献   

10.
The life cycle environmental profile of energy‐consuming products, such as air conditioning, is dominated by the products’ use phase. Different user behavior patterns can therefore yield large differences in the results of a cradle‐to‐grave assessment. Although this variation and uncertainty is increasingly recognized, it remains often poorly characterized in life cycle assessment (LCA) studies. Today, pervasive sensing presents the opportunity to collect rich data sets and improve profiling of use‐phase parameters, in turn facilitating quantification and reduction of this uncertainty in LCA. This study examined the case of energy use in building cooling systems, focusing on global warming potential (GWP) as the impact category. In Singapore, building cooling systems or air conditioning consumes up to 37% of national electricity demand. Lack of consideration of variation in use‐phase interaction leads to the oversized designs, wasted energy, and therefore reducible GWP. Using a high‐resolution data set derived from sensor observations, energy use and behavior patterns of single‐office occupants were characterized by probabilistic distributions. The interindividual variability and use‐phase variables were propagated in a stochastic model for the life cycle of air‐conditioning systems and simulated by way of Monte Carlo analysis. Analysis of the generated uncertainties identified plausible reductions in global warming impact through modifying user interaction. Designers concerned about the environmental profile of their products or systems need better representation of the underlying variability in use‐phase data to evaluate the impact. This study suggests that data can be reliably provided and incorporated into the life cycle by proliferation of pervasive sensing, which can only continue to benefit future LCA.  相似文献   

11.
The built environment is the largest single emitter of CO2 and an important consumer of energy. Much research has gone into the improved efficiency of building operation and construction products. Life Cycle Assessment (LCA) is commonly used to assess existing buildings or building products. Classic LCA, however, is not suited for evaluating the environmental performance of developing technologies. A new approach, anticipatory LCA (a‐LCA), promises various advantages and can be used as a design constraint during the product development stage. It helps overcome four challenges: (i) data availability, (ii) stakeholder inclusion, (iii) risk assessment, and (iv) multi‐criteria problems. This article's contribution to the line of research is twofold: first, it adapts the a‐LCA approach for construction‐specific purposes in theoretical terms for the four challenges. Second, it applies the method to an innovative prefabricated modular envelope system, the CleanTechBlock (CTB), focusing on challenge (i). Thirty‐six CTB designs are tested and compared to conventional walls. Inclusion of technology foresight is achieved through structured scenario analysis. Moreover, challenge (iv) is tackled through the analysis of different environmental impact categories, transport‐related impacts, and thickness of the wall assemblies of the CTB. The case study results show that optimized material choice and product design is needed to reach the lowest environmental impact. Methodological findings highlight the importance of context‐specific solutions and the need for benchmarking new products.  相似文献   

12.

Purpose

With the increasing concerns related to integration of social and economic dimensions of the sustainability into life cycle assessment (LCA), traditional LCA approach has been transformed into a new concept, which is called as life cycle sustainability assessment (LCSA). This study aims to contribute the existing LCSA framework by integrating several social and economic indicators to demonstrate the usefulness of input–output modeling on quantifying sustainability impacts. Additionally, inclusion of all indirect supply chain-related impacts provides an economy-wide analysis and a macro-level LCSA. Current research also aims to identify and outline economic, social, and environmental impacts, termed as triple bottom line (TBL), of the US residential and commercial buildings encompassing building construction, operation, and disposal phases.

Methods

To achieve this goal, TBL economic input–output based hybrid LCA model is utilized for assessing building sustainability of the US residential and commercial buildings. Residential buildings include single and multi-family structures, while medical buildings, hospitals, special care buildings, office buildings, including financial buildings, multi-merchandise shopping, beverage and food establishments, warehouses, and other commercial structures are classified as commercial buildings according to the US Department of Commerce. In this analysis, 16 macro-level sustainability assessment indicators were chosen and divided into three main categories, namely environmental, social, and economic indicators.

Results and discussion

Analysis results revealed that construction phase, electricity use, and commuting played a crucial role in much of the sustainability impact categories. The electricity use was the most dominant component of the environmental impacts with more than 50 % of greenhouse gas emissions and energy consumption through all life cycle stages of the US buildings. In addition, construction phase has the largest share in income category with 60 % of the total income generated through residential building’s life cycle. Residential buildings have higher shares in all of the sustainability impact categories due to their relatively higher economic activity and different supply chain characteristics.

Conclusions

This paper is an important attempt toward integrating the TBL perspective into LCSA framework. Policymakers can benefit from such approach and quantify macro-level environmental, economic, and social impacts of their policy implications simultaneously. Another important outcome of this study is that focusing only environmental impacts may misguide decision-makers and compromise social and economic benefits while trying to reduce environmental impacts. Hence, instead of focusing on environmental impacts only, this study filled the gap about analyzing sustainability impacts of buildings from a holistic perspective.  相似文献   

13.
14.
Purpose

An estimation of the environmental impact of buildings by means of a life cycle assessment (LCA) raises uncertainty related to the parameters that are subject to major changes over longer time spans. The main aim of the present study is to evaluate the influence of modifications in the electricity mix and the production efficiency in the chosen reference year on the embodied impacts (i.e., greenhouse gas (GHG) emissions) of building materials and components and the possible impact of this on future refurbishment measures.

Methods

A new LCA methodological approach was developed and implemented that can have a significant impact on the way in which existing buildings are assessed at the end of their service lives. The electricity mixes of different reference years were collected and assessed, and the main datasets and sub-datasets were modified according to the predefined substitution criteria. The influence of the electricity-mix modification and production efficiency were illustrated on a selected existing reference building, built in 1970. The relative contribution of the electricity mix to the embodied impact of the production phase was calculated for four different electricity mixes, with this comprising the electricity mix from 1970, the current electricity mix and two possible future electricity-mix scenarios for 2050. The residual value of the building was also estimated.

Results and discussion

In the case presented, the relative share of the electricity mix GHG emission towards the total value was as high as 20% for separate building components. If this electricity mix is replaced with an electricity mix having greater environmental emissions, the relative contribution of the electricity mix to the total emissions can be even higher. When, by contrast, the modified electricity mix is almost decarbonized, the relative contribution to the total emissions may well be reduced to a point where it becomes negligible. The modification of the electricity mix can also influence the residual value of a building. In the observed case, the differences due to different electricity mixes were in the range of 10%.

Conclusions

It was found that those parameters that are subject to a major change during the reference service period of the building should be treated dynamically in order to obtain reliable results. Future research is foreseen to provide additional knowledge concerning the influence of dynamic parameters on both the use phase and the end-of-life phase of buildings, and these findings will also be important when planning future refurbishment measures.

  相似文献   

15.
The aim of this article is to develop a methodological approach allowing to assess the influence of parameters of one or more elementary processes in the foreground system, on the outcomes of a life cycle assessment (LCA) study. From this perspective, the method must be able to: (1) include foreground process modeling in order to avoid the assumption of proportionality between inventory data and reference flows; (2) quantify influences of foreground processes’ parameters (and, possibly, interactions between parameters); and (3) identify trends (either increasing or decreasing) for each parameter on each indicator in order to determine the most favorable direction for parametric variation. These objectives can be reached by combining foreground system modeling, a set of two different sensitivity analysis methods (each one providing different and complementary information), and LCA. The proposed method is applied to a case study of hemp‐based insulation materials for buildings. The present study will focus on the agricultural stage as a foreground system and as a first step encompassing the entire life cycle. A set of technological recommendations were identified for hemp farmers in order to reduce the crop's environmental impacts (from –11% to –89% according to the considered impact category). One of the main limitations of the approach is the need for a detailed model of the foreground process. Further, the method is, at present, rather time‐consuming. However, it offers long‐term advantages given that the higher level of model detail adds robustness to the LCA results.  相似文献   

16.

Purpose

This research presents a methodology to characterize life cycle impact data (LCIA) of alternative construction materials outside of the European context.

Methods

This methodology was based on the characterization of data and life cycle assessment (LCA) using geographic information systems (GIS), which has been proposed as an effective alternative for this purpose. The data were characterized at three levels: global, represented by different production efficiency of materials; regional, represented by the type of electricity mix used in the production and the national transport at the country level; and local, represented by external factors, such as seismic and wind risk zones at the city level. A comparative LCA was used as case study to test the methodology. The functional unit for the LCA was defined as an 18 m2 core shelter unit consisting of structural elements only. The bill of materials for five designs were calculated, each using a distinctive construction material: bamboo, brick, concrete hollow block, ferro-cement panels, and soil-stabilised bricks. The contributions’ variability and uncertainty analysis were used to validate the consistency of the results. The effect of the external constraints (earthquakes and wind) were analysed, and the environmental impact over the whole life cycle was assessed. Five house designs were calculated in twenty locations based on three levels of production efficiency and three transport distance ranges for each country.

Results and discussion

The results of the bamboo, concrete hollow block and ferro-cement houses overlapped and changed depending on the construction materials’ transport distance. Therefore, the level of impact of an average bamboo house can also be achieved by a high-performance block or ferro-cement house. The results showed that in most cases, the buildings with high technical performance can be achieved with low environmental impacts.

Conclusions

The use of GIS enables the development of characterized LCIA data for construction materials and buildings with a high degree of consistency. Moreover, the proposed approach was able to accurately represent the range of production practices used outside Europe. Finally, the use of the proposed methodology allows for the assessment of building in the early stages of design when uncertainty is at its highest, thereby identifying the improvement potential of each design and recognising the structural needs in specific locations.
  相似文献   

17.
Climate change is expected to impact both the operational and structural performance of infrastructures such as roads, bridges, and buildings. However, most past life cycle assessment (LCA) studies do not consider how the operational/structural performance of infrastructure will be affected by a changing climate. The goal of this research was to develop a framework for integrating climate change impacts into LCA of infrastructure systems. To illustrate this framework, a flexible pavement case study was considered where life‐cycle environmental impacts were compared across a climate change scenario and several time horizons. The Mechanistic‐Empirical Pavement Design Guide (MEPDG) was utilized to capture the structural performance of each pavement performance scenario and performance distresses were used as inputs into a pavement LCA model that considered construction and maintenance/rehabilitation materials and activities, change in relative surface albedo, and impacts due to traffic. The results from the case study suggest that climate change will likely call for adaptive design requirements in the latter half of this century but in the near‐to‐mid term, the international roughness index (IRI) and total rutting degradation profile was very close to the historical climate run. While the inclusion of mechanistic performance models with climate change data as input introduces new uncertainties to infrastructure‐based LCA, sensitivity analyses runs were performed to better understand a comprehensive range of result outcomes. Through further infrastructure cases the framework could be streamlined to better suit specific infrastructures where only the infrastructure components with the greatest sensitivity to climate change are explicitly modeled using mechanistic‐empirical modeling routines.  相似文献   

18.

Purpose

Life cycle assessment (LCA) has been increasingly implemented in analyzing the environmental performance of buildings and construction projects. To assess the life cycle environmental performance, decision-makers may adopt the two life cycle impact assessment (LCIA) approaches, namely the midpoint and endpoint models. Any imprudent usage of the two approaches may affect the assessment results and thus lead to misleading findings. ReCiPe, a well-known work, includes a package of LCIA methods to provide assessments on both midpoint and endpoint levels. This study compares different potential LCIA results using the midpoint and endpoint approaches of ReCiPe based on the assessment of a commercial building in Hong Kong.

Methods

This paper examines 23 materials accounting for over 99 % of the environmental impacts of all the materials consumed in commercial buildings in Hong Kong. The midpoint and endpoint results are compared at the normalization level. A commercial building in Hong Kong is further studied to provide insights as a real case study. The ranking of impact categories and the contributions from various construction materials are examined for the commercial building. Influence due to the weighting factors is discussed.

Results and discussion

Normalization results of individual impact categories of the midpoint and endpoint approaches are consistent for the selected construction materials. The difference in the two approaches can be detected when several impact categories are considered. The ranking of materials is slightly different under the two approaches. The ranking of impact categories demonstrates completely different features. In the case study of a commercial building in Hong Kong, the contributions from subprocesses are different at the midpoint and endpoint. The weighting factors can determine not only the contributions of the damage categories to the total environment, but also the value of a single score.

Conclusions

In this research, the midpoint and endpoint approaches are compared using ReCiPe. Information is whittled down from the inventories to a single score. Midpoint results are comprehensive while endpoint results are concise. The endpoint approach which provides additional information of damage should be used as a supplementary to the midpoint model. When endpoint results are asked for, a LCIA method like ReCiPe that provides both the midpoint and endpoint analysis is recommended. This study can assist LCA designers to interpret the midpoint and endpoint results, in particular, for the assessment of commercial buildings in Hong Kong.  相似文献   

19.

Purpose

Service life of buildings is an essential parameter to evaluate its operational impact in life cycle assessment (LCA). Although most studies assume building service life about 75 to 100 years since no reliable data are available, its accurate quantification is still an unresolved work. To avoid wrong generalizations, the determination of the service life of buildings according to the characteristics of every region is required.

Methods

Life table, a methodology traditionally used in demographic studies, has been used in this paper to estimate the service life of buildings. This methodology has been applied to the dwelling stock of Spain for each of its 19 regions. Data acquisition and sources have been pointed out. The building obsolescence has been considered in the moment that they are in a ruinous state.

Results and discussion

Life table of buildings showed that the average service life of a residential building constructed in 2001 in Spain was expected to be 80 years. Significant different results of service life among regions were found, from 54 years for a building in Ceuta to 95 years in La Rioja. It also showed that 50 % of total Spanish dwellings are younger than 30 years, and they are expected to reach the ruinous state in 2063 to 2081.

Conclusions

Life table applied to buildings allows determining their service life. Its quantification is based on the buildings census, given by official institutions. Building census has to consider the year of construction and the state of conservation of the building to be applied in buildings' life table. Building service life can be used in LCA, renovation and deconstruction of the building stock, and future construction and demolition debris management.  相似文献   

20.
The life cycle environmental profile of energy‐consuming products is dominated by the products’ use stage. Variation in real‐world product use can therefore yield large differences in the results of life cycle assessment (LCA). Adequate characterization of input parameters is paramount for uncertainty quantification and has been a challenge to wider adoption of the LCA method. After emphasis in recent years on methodological development, data development has become the primary focus again. Pervasive sensing presents the opportunity to collect rich data sets and improve profiling of use‐stage parameters. Illustrating a data‐driven approach, we examine energy use in domestic cooling systems, focusing on climate change as the impact category. Specific objectives were to examine: (1) how characterization of the use stage by different probability distributions and (2) how characterizing data aggregated at successively higher granularity affects LCA modeling results and the uncertainty in output. Appliance‐level electricity data were sourced from domestic residences for 3 years. Use‐stage variables were propagated in a stochastic model and analyses simulated by Monte Carlo procedure. Although distribution choice did not necessarily significantly impact the estimated output, there were differences in the estimated uncertainty. Characterization of use‐stage power consumption in the model at successively higher data granularity reduced the output uncertainty with diminishing returns. Results therefore justify the collection of high granularity data sets representing the life cycle use stage of high‐energy products. The availability of such data through proliferation of pervasive sensing presents increasing opportunities to better characterize data and increase confidence in results of LCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号