首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource-intensive stream-specific models for runoff-dominated systems containing high-priority fisheries resources (e.g. trophy individuals, endangered species) that will be directly impacted by projected stream warming.  相似文献   

2.
In mountains, environmental gradients are steep in both terrestrial and aquatic systems, and climate change is causing upward shifts of physical and biological features of these gradients. Glacial streams are an interesting system to evaluate such shifts both because streams have a linear nature (for simplicity of analysis), and because the stream habitat will at least temporarily lengthen as it follows receding glaciers upward. The Tschierva Glacier, Swiss Alps, receded 482 m upstream from 1997 to 2008. We tested the null hypothesis that the physical and biological stream gradient below this glacier maintained the same structure between these time periods, but simply shifted upward following the glacial source. We compared longitudinal patterns of water temperature and zoobenthic community structure in 1997 and 2007–2008 during three seasons (spring, summer, fall) along the uppermost ca. 5 stream km. Upward shifts were evident, including colonization of the newly exposed stream reaches by cold‐adapted taxa, and the appearance in 2007/2008 of four lower‐altitude species that were previously absent. Overall, however, results rejected the null hypothesis, instead revealing significant changes in gradient structures. These included a more steeply increasing temperature profile downstream of the glacier and increased amplitude of seasonal community turnover in 2007/2008 vs. 1997. Long‐term (1955–2007) flow records revealed increasing short‐term and seasonal hydrologic variability, which might have influenced the increased intra‐annual community variability. The steepening of the temperature gradient was likely caused by a warming lake‐outlet tributary upon which glacial influence was diminished between 1997 and 2007/2008. These results suggest that upward‐shifting gradients in glacial streams can involve complex interactions with other landscape elements and that local‐scale climate response can progress even more rapidly than the rate of glacial recession.  相似文献   

3.
We projected effects of mid‐21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Omykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature‐dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid‐21st century, the effects of climate change are projected to be mixed. Fish in warm‐region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid‐21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year‐to‐year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams.  相似文献   

4.
5.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

6.
Climate change is expected to alter the magnitude and variation of flow in streams and rivers, hence providing new conditions for riverine communities. We evaluated plant ecological responses to climate change by transplanting turfs of riparian vegetation to new elevations in the riparian zone, thus simulating expected changes in water‐level variation, and monitored the results over 6 years. Turfs moved to higher elevations decreased in biomass and increased in species richness, whereas turfs transplanted to lower elevations gained biomass but lost species. Transplanted plant communities responded slowly to the new hydrologic conditions. After 6 years, biomass of transplanted turfs was statistically indistinguishable from target level controls, but species richness and species composition of transplants were intermediate between original and target levels. By using projections of future stream flow according to IPCC climate change scenarios, we predict likely changes to riparian vegetation in boreal rivers. Climate‐driven hydrologic changes are predicted to result in narrower riparian zones along the studied Vindel River in northern Sweden towards the end of the 21st century. Present riparian plant communities are projected to be replaced by terrestrial communities at high elevations as a result of lower‐magnitude spring floods, and by amphibious or aquatic communities at low elevations as a result of higher autumn and winter flows. Changes to riparian vegetation may be larger in other boreal climate regions: snow melt fed spring floods are predicted to disappear in southern parts of the boreal zone, which would result in considerable loss of riparian habitat. Our study emphasizes the importance of long‐term ecological field experiments given that plant communities often respond slowly and in a nonlinear fashion to external pressures.  相似文献   

7.
Shifts in biodiversity and ecological processes in stream ecosystems in response to rapid climate change will depend on how numerically and functionally dominant aquatic insect species respond to changes in stream temperature and hydrology. Across 253 minimally perturbed streams in eight ecoregions in the western USA, we modeled the distribution of 88 individual insect taxa in relation to existing combinations of maximum summer temperature, mean annual streamflow, and their interaction. We used a heat map approach along with downscaled general circulation model (GCM) projections of warming and streamflow change to estimate site‐specific extirpation likelihood for each taxon, allowing estimation of whole‐community change in streams across these ecoregions. Conservative climate change projections indicate a 30–40% loss of taxa in warmer, drier ecoregions and 10–20% loss in cooler, wetter ecoregions where taxa are relatively buffered from projected warming and hydrologic change. Differential vulnerability of taxa with key functional foraging roles in processing basal resources suggests that climate change has the potential to modify stream trophic structure and function (e.g., alter rates of detrital decomposition and algal consumption), particularly in warmer and drier ecoregions. We show that streamflow change is equally as important as warming in projected risk to stream community composition and that the relative threat posed by these two fundamental drivers varies across ecoregions according to projected gradients of temperature and hydrologic change. Results also suggest that direct human modification of streams through actions such as water abstraction is likely to further exacerbate loss of taxa and ecosystem alteration, especially in drying climates. Management actions to mitigate climate change impacts on stream ecosystems or to proactively adapt to them will require regional calibration, due to geographic variation in insect sensitivity and in exposure to projected thermal warming and hydrologic change.  相似文献   

8.
Long-term data are needed to assess spatial and temporal variability of communities and their resilience to natural and anthropogenic disturbances, particularly in climatic regions marked by high interannual variability (e.g. mediterranean-climate). A long-term study at four sites on two streams in mediterranean-climate California (annual sampling over 20  yr) allowed us to quantify the influence of a 5-yr prolonged drought on stream invertebrate and fish communities. Invertebrate community composition did not show recovery following drought. The primary environmental factors influencing community composition, identified through principle components and multiple correspondence analyses were precipitation and flow permanence. Invertebrate taxon richness and abundance exhibited few responses (some site specific) and recovered quickly. Native fish abundance was lowest during the drought period and highest during the wet years that occurred at the end of the study period. Importantly, the prolonged drought facilitated the establishment and success of the invasive green sunfish (Centrarchidae: Lepomis cyanellus ) that was then resilient to subsequent large flow events. There was high spatial synchrony in the temporal changes among all four sites, and three distinct periods were identified: early drought, late drought, and post-drought years. However, we still found differences among sites along the flow permanence gradient from temporary to perennial in the response to drought of both invertebrate and fish assemblages likely as a result of changes in substrate, vegetation, and other habitat characteristics. The observed lack of resilience and negative impacts to biodiversity due to prolonged drought associated with long-term habitat changes is important because hydroclimatic extremes are predicted to increase in frequency and magnitude with global climate change.  相似文献   

9.
Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070–2100) benthic macroinvertebrate assemblages at 239 near‐pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species’ distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate‐induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present‐day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high‐flow seasonality because of their vulnerability to climate change.  相似文献   

10.
The purpose of this investigation was to systematically examine the variability associated with temporally-oriented invertebrate data collected by citizen scientists and consider the value of such data for use in stream management. Variability in invertebrate data was estimated for three sources of variation: sampling, within-reach spatial and long-term temporal. Long-term temporal data were also evaluated using ordinations and an Index of Biotic Integrity (IBI). Through two separate investigations over an 11-year study period, participants collected more than 400 within-reach samples during 44 sampling events at three streams in the western United States. Within-reach invertebrate abundance coefficient of variation (CV) ranged from 0.44–0.50 with approximately 62% of the observed variation strictly due to sampling. Long-term temporal CV ranged from 0.31–0.36 with 27–30% of the observed variation in invertebrate abundance related to climate conditions (El Niño strength) and sampling year. Ordinations showed that citizen-generated assemblage data could reliably detect differences between study streams and seasons. IBI scores were significantly different between streams but not seasons. The findings of this study suggest that citizen data would likely detect a change in mean invertebrate density greater than 50% and would also be useful for monitoring changes in assemblage. The information presented here will help stream managers interpret and evaluate changes to the stream invertebrate community detected by citizen-based programs.  相似文献   

11.
1. We integrated a 20‐year ecological data set from a sparsely inhabited, snowmelt‐dominated catchment with hydrologic models to predict the effects of hydrologic shifts on stream biofilm. 2. We used a stepwise multiple regression to assess the relationship between hydrology and biofilm ash‐free dry mass (AFDM) and chlorophyll‐a (chl‐a) under recent climate conditions. Biofilm AFDM was significantly related to the timing of peak streamflow, and chl‐a was significantly related to the timing of median streamflow. We applied these results to output from the variable infiltration capacity hydrologic model, which predicted hydrology under a baseline scenario (+0 °C) and a range of warming scenarios expected with climate change (+1, +2 or +3 °C). 3. When compared to the baseline, the results indicated that earlier peakflows predicted under warming scenarios may lead to earlier initiation of biofilm growth. This may increase biofilm AFDM during the summer by up to 103% (±29) in the +3 °C scenario. Moreover, interannual variability of AFDM was predicted to increase up to 300%. Average chl‐a during the summer increased by up to 90% (±15) in the +3 °C scenario; however, its response was not significantly different from baseline in most years. 4. Because hydrologic change may alter the temporal dynamics of biofilm growth, it may affect the seasonal dynamics of biofilm quality (i.e. chl‐a‐to‐AFDM ratio). The results indicated that hydrologic shifts may increase biofilm quality during the spring, but may decrease it during the summer. Thus, we provide evidence that predicted hydrologic shifts in snowmelt‐dominated streams may alter the quantity and quality of an important basal resource. However, the magnitudes of these predictions are likely to be affected by other environmental changes that are occurring with climate change (e.g. increased wildfire activity and stream warming).  相似文献   

12.
Aim To investigate the potential impacts of climate change on stream fish assemblages in terms of species and biological trait diversity, composition and similarity. Location One‐thousand one‐hundred and ten stream sections in France. Methods We predicted the future potential distribution of 35 common stream fish species facing changes in temperature and precipitation regime. Seven different species distribution models were applied and a consensus forecast was produced to limit uncertainty between single‐models. The potential impacts of climate change on fish assemblages were assessed using both species and biological trait approaches. We then addressed the spatial distribution of potential impacts along the upstream–downstream gradient. Results Overall, climate change was predicted to result in an increase in species and trait diversity. Species and trait composition of the fish assemblages were also projected to be highly modified. Changes in assemblages’ diversity and composition differed strongly along the upstream–downstream gradient, with upstream and midstream assemblages more modified than downstream assemblages. We also predicted a global increase in species and trait similarity between pairwise assemblages indicating a future species and trait homogenization of fish assemblages. Nevertheless, we found that upstream assemblages would differentiate, whereas midstream and downstream assemblages would homogenize. Our results suggested that colonization could be the main driver of the predicted homogenization, while local extinctions could result in assemblage differentiation. Main conclusions This study demonstrated that climate change could lead to contrasted impacts on fish assemblage structure and diversity depending on the position along the upstream–downstream gradient. These results could have important implications in terms of ecosystem monitoring as they could be useful in establishing areas that would need conservation prioritization.  相似文献   

13.
Cross system subsidies of energy and materials can be a substantial fraction of food web fluxes in ecosystems, especially when autochthonous production is strongly limited by light or nutrients. We explored whether assimilation of terrestrial energy varied in specific consumer taxa collected from streams of different sizes and resource availabilities. Since headwater streams are often unproductive, we expected that inputs from surrounding terrestrial systems (i.e. leaf litter, terrestrial invertebrates) would be a more important food source for consumers than in mid‐size rivers that have more open canopies and higher amounts of primary production available for consumers. We collected basal resources, invertebrates, and fish along a gradient in stream size in the Adirondack Mountains (NY, USA) and in Trinidad and Tobago and analyzed all samples for hydrogen isotopes as a means of differentiating biomass derived from allochthonous versus autochthonous sources. We found significant differences in allochthonous energy use within individual consumer taxa, showing that some taxa range from being entirely allochthonous to entirely autochthonous depending on where they were collected on the stream size gradient (grazers and collector–gatherer functional feeding groups), while other taxa are relatively fixed in the source of energy they assimilate (shredder and predator functional feeding groups). Consistent with expectations, allochthonous energy use was positively correlated with canopy cover in both regions for most feeding groups, with individuals from small, shaded streams having a more pronounced allochthonous signal than individuals collected from larger streams with less canopy cover. However, consumers in the shredder/detritivore feeding group did not vary among sites in their allochthonous energy use, and had a mostly allochthonous signal regardless of canopy cover and algal biomass. Our results demonstrate that the importance of energy from terrestrial subsidies can vary markedly but are similar in both temperate and tropical streams, suggesting a widely consistent pattern.  相似文献   

14.
Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.  相似文献   

15.
Freshwater streams are critical resources that provide multiple benefits to humans and aquatic biota alike. As climate changes, it is projected that changes to the hydrological cycle and water temperatures will affect individual biota and aquatic ecosystems as a whole. The goal of this study was to determine the extent of climate change impacts on stream ecosystems as represented by four commonly used stream health indicators (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)). Seven watersheds in Michigan were selected based on stream thermal regimes. The Soil and Water Assessment Tool was used to simulate streamflow and pollutant loads. Important variables for each thermal class were selected using a Bayesian variable selection method and used as inputs to adaptive neuro-fuzzy inference systems models of EPT, FIBI, HBI, and IBI. Finally, an ensemble of climate models from the Coupled Model Intercomparison Project Phase 5 were used to determine the impacts of climate on the stream health in 2020–2040 compared to 1980–2000. The risk of declining stream health was determined using cumulative distribution functions. A stream temperature regression model was also developed to assess potential changes in stream thermal regimes, which could cause shifts in composition of aquatic communities. Several flow regime variables, including those related to flow variability, duration of extreme events, and timing were mainly affected by changing climate. At the watershed scale, most indicators were relatively insensitive to changing climate and the magnitude of stream health decline was low. However, at the reach scale, there are many instances of high risk and large magnitude of declines in the stream health indicators. At the same time, several streams experienced changes in thermal class, mostly transitioning from cold-transitional and cool streams to warm streams. This research demonstrated the applicability of the stream health modeling process in performing a climate change impacts assessment.  相似文献   

16.
The interaction between brown bears (Ursus arctos) and Pacific salmon (Oncorhynchus spp.) is important to the population dynamics of both species and a celebrated example of consumer‐mediated nutrient transport. Yet, much of the site‐specific information we have about the bears in this relationship comes from observations at a few highly visible but unrepresentative locations and a small number of radio‐telemetry studies. Consequently, our understanding of brown bear abundance and behavior at more cryptic locations where they commonly feed on salmon, including small spawning streams, remains limited. We employed a noninvasive genetic approach (barbed wire hair snares) over four summers (2012–2015) to document patterns of brown bear abundance and movement among six spawning streams for sockeye salmon, O. nerka, in southwestern Alaska. The streams were grouped into two trios on opposite sides of Lake Aleknagik. Thus, we predicted that most bears would forage within only one trio during the spawning season because of the energetic costs associated with swimming between them or traveling around the lake and show fidelity to particular trios across years because of the benefits of familiarity with local salmon dynamics and stream characteristics. Huggins closed‐capture models based on encounter histories from genotyped hair samples revealed that as many as 41 individuals visited single streams during the annual 6‐week sampling season. Bears also moved freely among trios of streams but rarely moved between these putative foraging neighborhoods, either during or between years. By implication, even small salmon spawning streams can serve as important resources for brown bears, and consistent use of stream neighborhoods by certain bears may play an important role in spatially structuring coastal bear populations. Our findings also underscore the efficacy of noninvasive hair snagging and genetic analysis for examining bear abundance and movements at relatively fine spatial and temporal scales.  相似文献   

17.
1. Rainforest streams in eastern Madagascar have species‐rich and diverse endemic insect communities, while streams in deforested areas have relatively depauperate assemblages dominated by collector‐gatherer taxa. We sampled a suite of benthic insects and their food resources in three primary rainforest streams within Ranomafana National Park in eastern Madagascar and three agriculture streams in the park's deforested peripheral zone. We analysed gut contents and combined biomass and stable isotope data to examine stream community responses to deforestation in the region, which is a threatened and globally important hotspot for freshwater biodiversity. 2. Gut analyses showed that most taxa depended largely on amorphous detritus, obtained either from biofilms (collector‐gatherers) or from seston (microfilterers). Despite different resource availability in forest versus agriculture streams, diets of each taxon did not differ between stream types, suggesting inflexible feeding modes. Carbon sources for forest stream insects were difficult to discern using δ13C. However, in agriculture streams dependence on terrestrial carbon sources was low relative to algal sources. Most insect taxa with δ13C similar to terrestrial carbon sources (e.g. the stonefly Madenemura, the caddisfly Chimarra sp. and Simulium blackflies) were absent or present at lower biomass in agriculture streams relative to forest streams. Conversely, collector‐gatherers (Afroptilum mayflies) relied on algal carbon sources and had much higher biomass in agriculture streams. 3. Our analyses indicate that a few collector‐gatherer species (mostly Ephemeroptera) can take advantage of increased primary production in biofilms and consequently dominate biomass in streams affected by deforestation. In contrast, many forest stream insects (especially those in the orders Plecoptera, Trichoptera and Diptera) depend on terrestrial carbon sources (i.e. seston and leaf litter), are unable to track resource availability and consequently decline in streams draining deforested landscapes. These forest‐specialists are often micro‐endemic and particularly vulnerable to deforestation. 4. The use of consumer biomass data in stable isotope research can help detect population‐level responses to shifts in basal resources caused by anthropogenic change. We also suggest that restoration of vegetated riparian zones in eastern Madagascar and elsewhere could mitigate the deleterious effects of deforestation on sensitive, endemic stream taxa that are dependent on terrestrial carbon sources.  相似文献   

18.
Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species‐specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species‐specific, spatially explicit forest landscape model (LANDIS‐II) to evaluate forest response to climate–wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium–high emission scenario (A2) in combination with corresponding climate‐specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought‐tolerant species over less drought‐tolerant species relative to baseline, and this change was greatest at mid‐elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape‐level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome‐based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant species are no longer able to establish. The potential exists for substantial community composition change and forest simplification beyond this century.  相似文献   

19.
1. Quantifying the relative importance of environmental filtering versus regional spatial structuring has become an intensively studied area in the context of metacommunity ecology. However, most studies have evaluated the role of environmental and spatial processes using taxonomic data sets of single snapshot surveys. 2. Here, we examined temporal changes in patterns and possible processes behind the functional metacommunity organization of stream fishes in a human‐modified landscape. Specifically, we (i) studied general changes in the functional composition of fish assemblages among 40 wadeable stream sites during a 3‐year study period in the catchment area of Lake Balaton, Hungary, (ii) quantified the relative importance of spatial and environmental factors as determinants of metacommunity structure and (iii) examined temporal variability in the relative role of spatial and environmental processes for this metacommunity. 3. Partial triadic analysis showed that assemblages could be effectively ordered along a functional gradient from invertebrate consuming species dominated by the opportunistic life‐history strategy, to assemblages with a diverse array of functional attributes. The analysis also revealed that functional fish assemblage structure was moderately stable among the sites between the sampling periods. 4. Despite moderate stability, variance partitioning using redundancy analyses (RDA) showed considerable temporal variability in the contribution of environmental and spatial factors to this pattern. The analyses also showed that environmental variables were, in general, more important than spatial ones in determining metacommunity structure. Of these, natural environmental variables (e.g. altitude, velocity) proved to be more influential than human‐related effects (e.g. pond area, % inhabited area above the site, nutrient enrichment), even in this landscape with relatively low variation in altitude and stream size. 5. Pond area was, however, the most important human stressor variable that was positively associated with the abundance of non‐native species with diverse functional attributes. The temporal variability in the relative importance of environmental and spatial factors was probably shaped by the release of non‐native fish from fish ponds to the stream system during flood events. 6. To conclude, both spatial processes and environmental control shape the functional metacommunity organization of stream fish assemblages in human‐modified landscapes, but their importance can vary in time. We argue, therefore, that metacommunity studies should better consider temporal variability in the ecological mechanisms (e.g. dispersal limitation, species sorting) that determine the dynamics of landscape‐level community organization.  相似文献   

20.
Stones were used to sample macroinvertebrates and characterise microhabitats at monthly or bimonthly intervals in six Ecuadorian streams covering a gradient in four different stability measures and other stream characteristics. The physical variables current velocity, water depth, horizontal position, embeddedness and size were measured to characterise stone microhabitats and presumed to be affected by or related to physical impact during hydrological disturbances. My first objective was to analyse how density, the number of families and a richness measure (residuals from a power regression of families vs. individuals) were related to the physical characteristics of individual stone habitats. My second objective was to quantify temporal variability in fauna–stone relationships and to analyse if such variability was related to overall stability of stream reaches. Partial Least Squares (PLS) multiple regression analyses showed high temporal variability between sampling dates in factor loadings of specific stone micro habitat variables. In spite of this, there was a clear negative effect of depth and a positive effect of current on density and number of families. Stone size was consistently negatively related to density and positively related to number of families. Patterns were less clear for richness residuals. Simple linear regressions of fauna vs. stone parameters generally confirmed the results reached by the PLS analysis, although few of the regressions were significant. For all fauna–stone regressions the variability in slopes was much higher among sampling dates within streams (temporal variability) than among streams (spatial variability), and significant slopes were even inverted on different sampling dates. Although the coefficients of variation (CV) of slopes of a given combination of fauna parameter and stone variable from different sampling dates (n=9–11) were rarely correlated to any of the measures of stream stability, this study has demonstrated high temporal variability in fauna–stone relationships (CV’s of regression slopes). Consequently, temporally un-replicated studies of such relationships do not necessarily reveal general patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号