首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new concept of immunogenic cell death (ICD) has recently been proposed. The immunogenic characteristics of this cell death mode are mediated mainly by molecules called ‘damage-associated molecular patterns'' (DAMPs), most of which are recognized by pattern recognition receptors. Some DAMPs are actively emitted by cells undergoing ICD (e.g. calreticulin (CRT) and adenosine triphosphate (ATP)), whereas others are emitted passively (e.g. high-mobility group box 1 protein (HMGB1)). Recent studies have demonstrated that these DAMPs play a beneficial role in anti-cancer therapy by interacting with the immune system. The molecular pathways involved in translocation of CRT to the cell surface and secretion of ATP from tumor cells undergoing ICD are being elucidated. However, it has also been shown that the same DAMPs could contribute to progression of cancer and promote resistance to anticancer treatments. In this review, we will critically evaluate the beneficial and detrimental roles of DAMPs in cancer therapy, focusing mainly on CRT, ATP and HMGB1.  相似文献   

2.
Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these.  相似文献   

3.
《Autophagy》2013,9(9):1292-1307
Calreticulin surface exposure (ecto-CALR), ATP secretion, maturation of dendritic cells (DCs) and stimulation of T cells are prerequisites for anticancer therapy-induced immunogenic cell death (ICD). Recent evidence suggests that chemotherapy-induced autophagy may positively regulate ICD by favoring ATP secretion. We have recently shown that reactive oxygen species (ROS)-based endoplasmic reticulum (ER) stress triggered by hypericin-mediated photodynamic therapy (Hyp-PDT) induces bona fide ICD. However, whether Hyp-PDT-induced autophagy regulates ICD was not explored. Here we showed that, in contrast to expectations, reducing autophagy (by ATG5 knockdown) in cancer cells did not alter ATP secretion after Hyp-PDT. Autophagy-attenuated cancer cells displayed enhanced ecto-CALR induction following Hyp-PDT, which strongly correlated with their inability to clear oxidatively damaged proteins. Furthermore, autophagy-attenuation in Hyp-PDT-treated cancer cells increased their ability to induce DC maturation, IL6 production and proliferation of CD4+ or CD8+ T cells, which was accompanied by IFNG production. Thus, our study unravels a role for ROS-induced autophagy in weakening functional interaction between dying cancer cells and the immune system thereby helping in evasion from ICD prerequisites or determinants.  相似文献   

4.
In the last decade, it has become clear that anti-cancer therapy is more successful when it can also induce an immunogenic form of cancer cell death (ICD). ICD is an umbrella term covering several cell death modalities, including apoptosis and necroptosis. In general, ICD is characterized by the emission of damage-associated molecular patterns (DAMPs) and/or cytokines/chemokines, leading to the induction of strong anti-tumor immune responses. In experimental cancer therapy, new observations indicate that the immunogenicity of dying cancer cells can be improved by the use of biomaterials. In this review, after a brief overview of the basic principles of the concept of ICD and discussion of the potential use of DAMPs as biomarkers of therapy efficacy, we discuss an emerging role of nanomaterials as a promising strategy to modulate the immunogenicity of cancer cell death. We address how nanocarriers can be used to increase the immunogenicity of ICD and then turn our attention to their dual action. Nanocarriers can be used to increase the immunogenicity of dying cancer cells and to reduce the side effects of chemotherapy. Future studies will show whether biomaterials are truly an optimal strategy to modulate the immunogenicity of dying cancer cells and will provide the insights needed for the development of novel treatment strategies for cancer.  相似文献   

5.
Chemotherapeutic agents have been linked to immunogenic cell death (ICD) induction that is capable of augmenting anti-tumor immune surveillance. The cardiac glycoside oleandrin, which inhibits Na+/K+-ATPase pump (NKP), has been shown to suppress breast cancer growth via inducing apoptosis. In the present study, we showed that oleandrin treatment triggered breast cancer cell ICD by inducing calreticulin (CRT) exposure on cell surface and the release of high-mobility group protein B1 (HMGB1), heat shock protein 70/90 (HSP70/90), and adenosine triphosphate (ATP). The maturation and activation of dendritic cells (DCs) were increased by co-culturing with the oleandrin-treated cancer cells, which subsequently enhanced CD8+ T cell cytotoxicity. Murine breast cancer cell line EMT6 was engrafted into BALB/c mice, and tumor-bearing mice were administered with oleandrin intraperitoneally every day. Oleandrin inhibited tumor growth and increased tumor infiltrating lymphocytes including DCs and T cells. Furthermore, the differential mRNA expression incurred by oleandrin was investigated by mRNA sequencing and subsequently confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Mechanistically, oleandrin induced endoplasmic reticulum (ER) stress-associated, caspase-independent ICD mainly through PERK/elF2α/ATF4/CHOP pathway. Pharmacological and genetic inhibition of protein kinase R-like ER kinase (PERK) suppressed oleandrin-triggered ICD. Taken together, our findings showed that oleandrin triggered ER stress and induced ICD-mediated immune destruction of breast cancer cells. Oleandrin combined with immune checkpoint inhibitors might improve the efficacy of immunotherapy.Subject terms: Tumour immunology, Preclinical research  相似文献   

6.
Apoptotic cell death generally characterized by a morphologically homogenous entity has been considered to be essentially non-immunogenic. However, apoptotic cancer cell death, also known as type 1 programmed cell death (PCD), was recently found to be immunogenic after treatment with several chemotherapeutic agents and oncolytic viruses through the emission of various danger-associated molecular patterns (DAMPs). Extensive studies have revealed that two different types of immunogenic cell death (ICD) inducers, recently classified by their distinct actions in endoplasmic reticulum (ER) stress, can reinitiate immune responses suppressed by the tumor microenvironment. Indeed, recent clinical studies have shown that several immunotherapeutic modalities including therapeutic cancer vaccines and oncolytic viruses, but not conventional chemotherapies, culminate in beneficial outcomes, probably because of their different mechanisms of ICD induction. Furthermore, interests in PCD of cancer cells have shifted from its classical form to novel forms involving autophagic cell death (ACD), programmed necrotic cell death (necroptosis), and pyroptosis, some of which entail immunogenicity after anticancer treatments. In this review, we provide a brief outline of the well-characterized DAMPs such as calreticulin (CRT) exposure, high-mobility group protein B1 (HMGB1), and adenosine triphosphate (ATP) release, which are induced by the morphologically distinct types of cell death. In the latter part, our review focuses on how emerging oncolytic viruses induce different forms of cell death and the combinations of oncolytic virotherapies with further immunomodulation by cyclophosphamide and other immunotherapeutic modalities foster dendritic cell (DC)-mediated induction of antitumor immunity. Accordingly, it is increasingly important to fully understand how and which ICD inducers cause multimodal ICD, which should aid the design of reasonably multifaceted anticancer modalities to maximize ICD-triggered antitumor immunity and eliminate residual or metastasized tumors while sparing autoimmune diseases.  相似文献   

7.

Background

Damage-associated molecular patterns (DAMPs) are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs). Specific microtubule-depolymerizing agents (MDAs) such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs.

Methods

In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues) to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine.

Results

The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT). DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs.

Conclusions

Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs) can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.  相似文献   

8.
Abstract

Background: Platinum compounds are commonly used for lung cancer treatment. However, the severe side effects and relatively poor prognosis limit their therapeutic effect. Therefore, developing novel platinum derivative and treatment strategy are critical for current lung cancer therapy.

Methods: Flow cytometry, HMGB1 and ATP release, and immunoblotting were performed to evaluate the Oxaliplatin-induced immunogenic cell death (ICD) in two lung carcinoma cells. Vaccination approach and subcutaneous tumor models were created to analyze the tumor regression effect of Oxaliplatin. PD-L1 mRNA and protein levels were detected in LLC (Lewis lung carcinoma). Enhanced therapeutic efficacy of LLC was assessed by co-administration Oxaliplatin and aPD-L1 in murine lung tumor model.

Results: Oxaliplatin induced robust ICD in LLC cells, activated dendritic cells (DCs, CD80+CD86+) and enhanced cytotoxic T cells (CD8+) in LLC tumor tissues, which resulted in tumor regression. Co-administration of Oxaliplatin and checkpoint inhibitor, aPD-L1, could enhance the therapeutic efficacy of LLC in murine lung carcinoma.

Conclusion: This study reveals Oxaliplatin can induce robust ICD in tumor tissues and suppress tumor growth by activating DCs and enhancing T-cell infiltration. Notably, the Oxaliplatin-induced ICD provides an immunogenic microenvironment, which enhances the checkpoint inhibitor therapeutic efficacy of LLC.  相似文献   

9.
Few conventional cytotoxic anticancer therapeutics induce immunogenic cell death (ICD). This means that they induce tumor cells to undergo apoptosis while eliciting the emission of a spatiotemporal-defined combination of damage-associated molecular patterns (DAMPs) decoded by the immune system to activate antitumor immunity effective for long-term therapeutic success. The neurotoxin capsaicin (CPS) can induce both cancer cell apoptosis and immune-mediated tumor regression. In the present study, we investigated whether CPS is capable of eliciting the emission of ICD hallmarks in human bladder cancer cell lines undergoing apoptosis. We demonstrated that CPS induces pre- and early apoptotic cell surface exposure of calreticulin (CRT), HSP90, and HSP70 as well as ATP release. Moreover, CRT exposure was prevented by inhibition of endoplasmic reticulum–Golgi traffic by brefeldin A. Furthermore, high-mobility group box 1, HSP90, and HSP70 were passively released at late apoptotic stages. We provide the first evidence that CPS is an inducer of ICD hallmarks, suggesting CPS as a novel potential immunogenic cytotoxic agent.  相似文献   

10.
Immunogenic profile of certain cancer cell death mechanisms has been transmuted by research published over a period of last few years and this change has been so drastic that a new (sub)class of apoptotic cancer cell death, redefined as ‘immunogenic apoptosis’ has started taking shape. In fact, it has been shown that this chemotherapeutic agent-specific immunogenic cancer cell death modality has the capabilities to induce ‘anticancer vaccine effect’, in vivo. These new trends have given an opportunity to combine tumour cell kill and antitumour immunity within a single paradigm, a sort of ‘holy grail’ of anticancer therapeutics. At the molecular level, it has been shown that the immunological silhouette of these cell death pathways is defined by a set of molecules called ‘damage-associated molecular patterns (DAMPs)’. Various intracellular molecules like calreticulin (CRT), heat-shock proteins (HSPs), high-mobility group box-1 (HMGB1) protein, have been shown to be DAMPs exposed/secreted in a stress agent/factor-and cell death-specific manner. These discoveries have motivated further research into discovery of new DAMPs, new pathways for their exposure/secretion, search for new agents capable of inducing immunogenic cell death and urge to solve currently present problems with this paradigm. We anticipate that this emerging amalgamation of DAMPs, immunogenic cell death and anticancer therapeutics may be the key towards squelching cancer-related mortalities, in near future.  相似文献   

11.
12.
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.Subject terms: Cancer models, Antigen-presenting cells, Immune cell death  相似文献   

13.
Preclinical and clinical findings suggest that tumor-specific immune responses may be responsible – at least in part – for the clinical success of therapeutic regimens that rely on immunogenic cell death (ICD) inducers, including anthracyclines and oxaliplatin. The molecular pathways whereby some, but not all, cytotoxic agents promote bona fide ICD remain to be fully elucidated. Nevertheless, a central role for the endoplasmic reticulum (ER) stress response has been revealed in all scenarios of ICD described thus far. Hence, components of the ER stress machinery may constitute clinically relevant druggable targets for the induction of ICD. In this review, we will summarize recent findings in the field of ICD research with a special focus on ER stress mechanisms and their implication for cancer therapy.  相似文献   

14.
The immunogenic demise of cancer cells can be induced by various chemotherapeutics, such as anthracyclines and oxaliplatin, and provokes an immune response against tumor-associated antigens. Thus, immunogenic cell death (ICD)-inducing antineoplastic agents stimulate a tumor-specific immune response that determines the long-term success of therapy. The release of ATP from dying cells constitutes one of the three major hallmarks of ICD and occurs independently of the two others, namely, the pre-apoptotic exposure of calreticulin on the cell surface and the postmortem release of high-mobility group box 1 (HMBG1) into the extracellular space. Pre-mortem autophagy is known to be required for the ICD-associated secretion of ATP, implying that autophagy-deficient cancer cells fail to elicit therapy-relevant immune responses in vivo. However, the precise molecular mechanisms whereby ATP is actively secreted in the course of ICD remain elusive. Using a combination of pharmacological screens, silencing experiments and techniques to monitor the subcellular localization of ATP, we show here that, in response to ICD inducers, ATP redistributes from lysosomes to autolysosomes and is secreted by a mechanism that requires the lysosomal protein LAMP1, which translocates to the plasma membrane in a strictly caspase-dependent manner. The secretion of ATP additionally involves the caspase-dependent activation of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent cellular blebbing, as well as the opening of pannexin 1 (PANX1) channels, which is also triggered by caspases. Of note, although autophagy and LAMP1 fail to influence PANX1 channel opening, PANX1 is required for the ICD-associated translocation of LAMP1 to the plasma membrane. Altogether, these findings suggest that caspase- and PANX1-dependent lysosomal exocytosis has an essential role in ATP release as triggered by immunogenic chemotherapy.  相似文献   

15.
Recently, cytokine-based pro-tumourigenic signalling has been found to play a major role in the immune system's pro-tumourigenic activity. On the other hand, other recent findings have shown that immunogenic cancer cell death triggered by certain anticancer modalities might reset the dysfunctional immune system towards the activation of a long-lasting protective anti-tumour response. Therefore, using inducers of immunogenic cell death (ICD) that can prevent or impede tumour-promoting cytokine signalling is one of the best ways of instigating or restoring efficient anti-tumour immunity. In this review it is discussed, how the different ICD inducers interact with the immune system and influence cytokine-based pro-tumourigenic signalling. We believe that it is crucial to discover or develop new anti-cancer therapeutic modalities that can induce ICD and impede tumour-promoting cytokine signalling.  相似文献   

16.
Resistance to ‘apoptotic'' cell death is one of the major hallmarks of cancer, contributing to tumor development and therapeutic resistance. Damage-associated molecular patterns (DAMPs) are molecules released or exposed by dead, dying, injured, or stressed non-apoptotic cells, with multiple roles in inflammation and immunity. Release of DAMPs not only contributes to tumor growth and progression but also mediates skewing of antitumor immunity during so-called immunogenic tumor cell death (ICD). Autophagy is a lysosome-mediated homeostatic degradation process in which cells digest their own effete organelles and macromolecules to meet bioenergetic needs and enable protein synthesis. For tumor cells, autophagy is a double-edged sword. Autophagy, in balance with apoptosis, can function as a tumor suppressor; autophagy deficiency, associated with alterations in apoptosis, initiates tumorigenesis in many settings. In contrast, autophagy-related stress tolerance generally promotes cell survival, which enables tumor growth and promotes therapeutic resistance. Most anticancer therapies promote DAMP release and enhance autophagy. Autophagy not only regulates DAMP release and degradation, but also is triggered and regulated by DAMPs. This interplay between autophagy and DAMPs, serving as ‘strange attractors'' in the dynamic system that emerges in cancer, regulates the effectiveness of antitumor treatment. This interplay also shapes the immune response to dying cells upon ICD, culling the least fit tumor cells and promoting survival of others. Thus, DAMPs and autophagy are suitable emergent targets for cancer therapy, considering their more nuanced role in tumor progression.  相似文献   

17.
《Translational oncology》2021,14(12):101224
The genetic background and the antigenic landscape of cancer cells play a critical role in the response to immunotherapies. A high tumor antigenicity, together with an increased adjuvanticity potentially induced by a peculiar type of cell death, namely immunogenic cell death (ICD), could foster the response to immunogenic therapies. The gestational trophoblastic neoplasm (GTN) is a one-of-a-kind cancer in the oncological landscape due to its exclusive genomic makeup. The prognosis of GTN is significantly better than non-gestational trophoblastic neoplasm (nGTN). Due to its peculiar genetic inheritance, GTN potentially constitutes a singular archetype in the immuno-oncological field.  相似文献   

18.
《Translational oncology》2022,15(12):101224
The genetic background and the antigenic landscape of cancer cells play a critical role in the response to immunotherapies. A high tumor antigenicity, together with an increased adjuvanticity potentially induced by a peculiar type of cell death, namely immunogenic cell death (ICD), could foster the response to immunogenic therapies. The gestational trophoblastic neoplasm (GTN) is a one-of-a-kind cancer in the oncological landscape due to its exclusive genomic makeup. The prognosis of GTN is significantly better than non-gestational trophoblastic neoplasm (nGTN). Due to its peculiar genetic inheritance, GTN potentially constitutes a singular archetype in the immuno-oncological field.  相似文献   

19.
Exosomes (EXO) derived from tumour cells have been used to stimulate antitumour immune responses, but only resulting in prophylatic immunity. Tumour‐derived heat shock protein 70 (HSP70) molecules are molecular chaperones with a broad repertoire of tumour antigen peptides capable of stimulating dendritic cell (DC) maturation and T‐cell immune responses. To enhance EXO‐based antitumour immunity, we generated an engineered myeloma cell line J558HSP expressing endogenous P1A tumour antigen and transgenic form of membrane‐bound HSP70 and heat‐shocked J558HS expressing cytoplasmic HSP70, and purified EXOHSP and EXOHS from J558HSP and J558HS tumour cell culture supernatants by ultracentrifugation. We found that EXOHSP were able to more efficiently stimulate maturation of DCs with up‐regulation of Iab, CD40, CD80 and inflammatory cytokines than EXOHS after overnight incubation of immature bone‐marrow‐derived DCs (5 × 106 cells) with EXO (100 μg), respectively. We also i.v. immunized BALB/c mice with EXO (30 μg/mouse) and assessed P1A‐specific T‐cell responses after immunization. We demonstrate that EXOHSP are able to stimulate type 1 CD4+ helper T (Th1) cell responses, and more efficient P1A‐specific CD8+ cytotoxic T lymphocyte (CTL) responses and antitumour immunity than EXOHS. In addition, we further elucidate that EXOHSP‐stimulated antitumour immunity is mediated by both P1A‐specific CD8+ CTL and non‐P1A‐specific natural killer (NK) responses. Therefore, membrane‐bound HSP70‐expressing tumour cell‐released EXO may represent a more effective EXO‐based vaccine in induction of antitumour immunity.  相似文献   

20.
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号