首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Reciprocal recurrent selection (RRS) has been successfully applied to maize breeding for more than 60 years. Our objective was to assess the relative efficiency of the genotypic value and the effects of general and specific combining abilities (GCA and SCA) on selection. The GCA effect reflects the number of favorable genes in the parent. The SCA effect primarily reflects the differences in the gene frequencies between the parents. We simulated three traits, three classes of populations, and 10 cycles of half- and full-sib RRS. The RRS is a highly efficient process for intra- and interpopulation breeding, regardless of the trait or the level of divergence among the populations. The RRS increases the heterosis of the interpopulation cross when there is dominance, and it decreases the inbreeding depression in the populations and the genetic variability in the populations and in the hybrid. When there is not dominance and the populations are not divergent, the RRS also determines population differentiation. The half-sib RRS, which is equivalent to selection based on the GCA effect, is more efficient than the full-sib RRS based on the genotypic value, regardless of the trait or the level of improvement of the populations. The full-sib RRS based on the SCA effect is not efficient for intra- and interpopulation breeding.  相似文献   

2.
Recombination of selected genotypes plays a key role in plant breeding for generating new base populations. We investigated the influence of recombination in two parent populations on the means and combining ability variances of their hybrid population by (1) quantitative genetic theory and (2) experiments with maize. The two parent populations were founded by four early flint and four early dent inbred lines, respectively. Each population was studied in three generations: Syn-0, the four inbred lines themselves; Syn*-1, the six intrapool single crosses (SC); and Syn*-2, the three intrapool double crosses (DC). Four interpool hybrid populations were created: (1) all 16 SC and (2) all 36 DC were produced from generations Syn-0 and Syn*-1, respectively, (3) 168 biparental progenies (BIP) of type flint x dent (female x male), and (4) 168 BIP of type dent x flint were produced according to NC-design I with randomly sampled plants of generation Syn*-2. The half-sib and full-sib families obtained in this manner were evaluated for grain yield, dry matter concentration and plant height. According to theoretical results, differences in the population means of these hybrid populations indicate the presence of various types of epistasis. Changes in combining ability variances from SC to DC reflect different levels of parental inbreeding (F = 1 vs F = 0), whereas changes from DC to BIP only reflect the effects of recombination and are attributable to covariances between additive and dominance effects caused by linkage disequilibrium in the Syn-0 generations. The experimental results showed a significant decline in yield from DC to BIP due to a loss of gene combinations with favourable epistatic effects. Estimates of sigma(2)(GCA) attributable to flint or dent lines decreased or remained unchanged from SC to DC, but generally increased in the BIP populations. The consequences of these trends for developing improved interpool hybrids are discussed.  相似文献   

3.
Reciprocal recurrent selection (RRS) was proposed for simultaneously improving two populations and their cross. A modification of the classical full-sib RRS (FS-RRS) was proposed in which the performance of full-sibs and S2 families is combined in a selection index (FS-S2-RRS). The Mediterranean corn borer (MCB) is the main corn borer species in the Mediterranean and adjacent areas and produces important yield losses. We started two RRS programs (FS-RRS and FS-S2-RRS) from the same maize population in which the selection criterion was grain yield under artificial infestation with MCB eggs. Original populations, two cycles of selection derived from them by both RRS methods, and population crosses were evaluated under MCB attack and under insecticide treatment in three different environments. The objective was to compare the efficiency of the FS-RRS and the FS-S2-RRS methods for improving grain yield. We found that the FS-S2-RRS method was successful for improving the yield of the population cross under optimum conditions (the regression coefficient over cycles was b = 0.87** Mg ha−1 cycle−1) without losing yield under high pressure of MCB attack (b = 0.07). On the contrary, FS-RRS failed to improve the yield of the population cross under optimum conditions (b = 0.65) and tended to decrease the yield under high levels of MCB attack (b = −0.26). We conclude that for developing high yielding and stable varieties, FS-S2-RRS is more efficient than the classical FS-RRS method.  相似文献   

4.
Brown WP  Bell AE 《Genetics》1980,94(2):477-496
Three alternative selection methods for extending selection limits or breaking response plateaus were compared over ten generations in a replicated model experiment using two unrelated populations of Drosophila melanogaster that no longer responded to purebred selection for high egg number, a heterotic polygenic trait. The three methods were: (1) reciprocal recurrent selection (RRS) with selection within each of the plateaued populations based solely on crossbred performance, (2) a modification of reciprocal recurrent selection (MRRS) with selection within each population based on both purebred and crossbred performance, and (3) purebred selection within a new synthetic population formed by crossing the two plateaued populations.--Conflicting estimates were obtained for heritability of purebred egg number in each of the plateaued populations. The realized heritability values and estimates from diallel analyses indicated an absence of additive genetic variation for both populations; however, estimates from conventional intraclass correlation methods were positive. The diallel analyses revealed significant amounts of nonadditive gene effects for purebred egg number in each population, while the significant gene effects for crossbred egg numbers were additive. Estimates of the genetic correlation between purebred and crossbred egg number were negative (-0.85 +/- 0.68 and -0.32 +/- 0.25) for the two base populations.--All three alternatives to continued purebred selection gave significant responses, with the average gain per generation from MRRS being significantly superior to the other two methods. Observed purebred and crossbred responses under RRS were in agreement with quantitative genetic theory. Such was not the case for MRRS, which suggested the possibility of major gene segregation.--Evidence supporting a negative genetic correlation between purebred and crossbred performance and the possibility of overdominance is presented and discussed.  相似文献   

5.
Summary A study was made of the nature of variation and changes in association for characters related to yield, development and disease resistance in two sets of progenies one set derived through biparental mating (A-series) and the other by traditional inbreeding (selfing) from the F2 onwards (T-series), in a 22 × 22 diallel of dwarf derivatives of Pennisetum typhoides S & H. Comparison of means and variances within and between the two groups of progenies (A and T-series) and with those of released hybrids (HB-1, HB-2, HB-3, HB-4) for seventeen characters (six related to development, six to productivity, three to vegetative growth and one each to earliness and disease incidence) showed significant variation among the lines of the two series for synchrony of tillering, earliness, disease incidence, chlorophyll depth, grain hairiness, tiller number, plant height, length of earhead, grain yield and grain weight. The A-series selections were significantly superior to the T-series for most of the characters, indicating the effectiveness of selection in biparental matings compared with selection in selfed progenies for these traits. Many of the A-series (220 out of 800) selections were also superior to the existing released hybrids.Changes in the magnitude and nature of association among twelve important characters in the two populations were more favourable in the biparental matings: of 66 possible correlation coefficients examined, 25 cases were found with changes in favour of selections from biparental matings (A-series). These changes were probably due to the breakage of unfavourable linkages and changes in phase of linkage, and indicate the usefulness of biparental matings in the simultaneous improvement of the population for several attributes.  相似文献   

6.
Summary The present study was undertaken to obtain information on average gene frequency in two heterotic populations of maize (Zea mays L.), Mezcla Amarillo Selection (MAS) and J607. Sixty-four male plants were taken in each of the populations and each of these were crossed to a different set of eight plants, four of which belonged to the same population and four to the other population. This resulted in two groups of intra-population (within MAS and within J607) and two groups of inter-population (MAS X J607 and J607 X MAS) progenies. Each group consisted of 256 full-sib progenies on the pattern of the North Carolina Design I mating system. The male plants were selfed to produce 64 S1 prgenies in each population. The materials were evaluated at two diverse locations, Ludhiana and Gurdaspur, for grain yield, ear length, ear girth, number of kernel rows, plant height, ear height and days to silk. An incomplete block design with two replications were used. The plot consisted of a 5 m long row. Ratios of estimated genetic components of variance and covariance were compared with corresponding theoretical ratios computed for a single locus for various gene frequencies and levels of dominance, and approximate ranges of the gene frequencies and their relative magnitude were worked out in the two populations. The average frequency of favourable genes for plant height was estimated as 0.6 in MAS and 0.8 in J607. For grain yield the average gene frequency was 0.8 to 0.9 in MAS and 0.7 to 0.8 in J607 whereas for ear height it was 0.5 to 0.7 in MAS and 0.4 to 0.6 in J607. The gene frequency in the two populations seemed to be similar for days to silk, ear length, ear girth and kernel rows.  相似文献   

7.
Reciprocal recurrent selection (RRS), which assumes overdominant loci to be important, alters two genetically different populations to improve their crossbred mean. Individual plants from two populations (A and B) are selfed and also crossed with plants from the reciprocal female tester population (B and A, respectively). Selection is based on the mean of crossbred families, and the selected individuals are randomly mated within A and B to form new populations.—We propose two alternatives to RRS. The first (RRS-I) uses, as the tester of population A, a population (LB) that is derived from population B by family selection for low yield. The second (RRS-II) is similar to RRS-I, but also uses, as the tester of B, a population (LA) that is derived from population A by family selection for low yield.—The expected crossbred means of RRS, RRS-I, and RRS-II were compared, assuming equal σP, at several cycles of selection for incomplete and complete dominance, and for several cases of overdominance (depending on the gene frequencies in A and B, and on the equilibrium gene frequency).—The choice of selection method depends on the importance of the effects of overdominant loci compared to loci exhibiting incomplete or complete dominance. If overdominance is unimportant, RRS-II is the best selection method, followed by RRS-I and RRS. If overdominance is important, both RRS and RRS-I are superior to RRS-II; RRS is preferred to RRS-I if the effects of overdominant loci are sufficiently important. If the genetic model is a mixture of levels of dominance at different loci, a combination of selection systems is suggested.  相似文献   

8.
Selection response of a modified recurrent full-sib (FS) selection scheme conducted in two European flint F2 maize (Zea mays L.) populations was re-evaluated. Our objectives were to (1) determine the selection response for per se and testcross performance in both populations and (2) separate genetic effects due to selection from those due to random genetic drift. Modified recurrent FS selection was conducted at three locations using an effective population size N e = 32 and a selection rate of 25% for a selection index, based on grain yield and grain moisture. Recombination was performed according to a pseudo-factorial mating scheme. Selection response was assessed using a population diallel including the source population and advanced selection cycles, as well as testcrosses with unrelatesd inbred line testers and the parental F1 generation. Selection response per cycle was significant for grain yield and grain moisture in both populations. Effects of random genetic drift caused only a small reduction in the selection response. No significant selection response was observed for testcrosses, suggesting that for heterotic traits, such as grain yield, a high frequency of favorable alleles in the elite tester masked the effects of genes segregating in the populations. We conclude that our modified recurrent FS selection is an alternative to other commonly applied intrapopulation recurrent selection schemes, and some of its features may also be useful for increasing the efficiency of interpopulation recurrent selection programs.  相似文献   

9.
Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS.  相似文献   

10.
 Strawberry genotypes selected for superior fruit yield or chosen at random from first-generation self, full-sib, and half-sib populations were crossed to provide second-generation inbred progenies and composite cross-fertilized control populations. Mean yields for inbred offspring from crosses among selected parents exceeded those from the offspring of unselected parents by 87%, 23%, and 37% for self, full-sib, and half-sib populations, respectively; yields for offspring from unrelated crosses among selected parents were 54% larger than those for crosses among unselected parents. Selection for yield also resulted in significant correlated response for fruit number and plant diameter. Mean yields for second-generation half-sib and full-sib offspring from selected parents were greater than those for offspring from the unselected but non-inbred control population. This suggests that selection can be a powerful force in counteracting most of the inbreeding depression expected in cross-fertilized strawberry breeding programs. Selection treatment× inbreeding rate interactions were non-significant for all traits; thus, selection among partially inbred offspring did not have a large effect on the rate of genetic progress. Differential realized selection intensity among individuals with differing levels of homozygosity accumulated due to inbreeding is suggested as the most likely explanation for the absence of association between pedigree inbreeding coefficients and cross performance detected previously in strawberry. Received: 21 July 1996 / Accepted: 7 March 1997  相似文献   

11.
Summary The relative efficiences of the biparental mating systems and selfing series in connection with phenotypic and geno-phenotypic selection procedures were evaluated for yield improvement in a cross HP1102 X CPAN 1681 of wheat. Two selection cycles having a 4 per cent selection intensity for grain yield were carried out following both selection procedures under the two mating systems. Following these selection procedures, a greater improvement for grain yield could be achieved with the biparental mating system than with the selfing series. During the first selection cycle, the geno-phenotypic selection procedure had an edge over phenotypic selection procedure. The realized response due to the second cycle of selection and the predicted response for the third selection cycle indicated that the phenotypic selection procedure is more efficient than the geno-phenotypic selection procedure. It is suggested that selection following intermating in early segregating generations is able to overcome several inherent limitations of the simple pedigree method as it is possible to increase genetic variation and to concentrate favourable genes and gene combinations for grain yield. An increase in grain yield was, in general, accompanied by an increase in plant height, peduncle length, 100 grain weight, tiller number and biological yield. Therefore, it is suggested that an index comprised of grain yield, plant height, tiller number, grain weight and biological yield could be used for selecting high yielding genotypes of suitable height.  相似文献   

12.
Summary Two diverse parents of upland cotton namely J.34 and I.C. 1926 were crossed. A comparison between biparental intermated progenies and F3 families indicated alteration of correlation coefficient between yield and halo length. The significant negative correlation in F3 population between these two attributes changed to a positive but non significant one in biparental intermated progenies. A change in correlation coefficients was expected due to breakage of linkage upon intermating. An increase in the correlation coefficients could also be expected when linkages are predominantly in the repulsion phase. It is suggested that intermating in early generations coupled with selection of desirable segregants may prove a useful method for improving yield and quality simultaneously. The diallel selective mating system may also supplement intermating to improve yield and quality in cotton.Part of Ph.D. Thesis submitted to the Haryana Agricultural University. Hissar-125004, India  相似文献   

13.
Linkage mapping based on multiple-line crosses is a promising strategy for mapping quantitative trait loci (QTL) underlying important agronomic traits. The main goal of this survey was to study the advantages of QTL mapping across versus within biparental populations using experimental data from three connected sugar beet (Beta vulgaris L.) populations evaluated for beet yield and potassium and sodium content. For the combined analysis across populations, we used two approaches for cofactor selection. In Model A, we assumed identical cofactors for every segregating population. In contrast, in Model B we selected cofactors specific for every segregating population. Model A performed better than Model B with respect to the number of QTL detected and the total proportion of phenotypic variance explained. The QTL analyses across populations revealed a substantially higher number of QTL compared to the analyses of single biparental populations. This clearly emphasizes the potential to increase QTL detection power with a joint analysis across biparental populations.  相似文献   

14.
唐如玉  徐鹏  余迪求 《广西植物》2020,40(2):159-172
该研究基于4个陆稻群体及172个水稻品种或杂交组合,构建了水稻多亲本隐性核不育轮回选择群体XTBG-HP1,并经过4次轮回重组,采用16个表型性状对其进行了遗传多样性分析。结果表明:(1)该群体14个数量性状符合正态分布,各表型均存在极端性状个体。(2)数量性状变异系数范围为0.08~0.41,均值为0.20; Shannon-Wiener多样性指数范围为0.72~1.92,均值为1.50。(3)群体在株型与产量构成因子性状方面有显著的相关性,对株型的选择可以实现产量性状的改良。(4)剑叶长、每穗粒总数、千粒重、穗长、粒长、一次枝梗数、有效穗数、剑叶宽、二次枝梗数、抽穗期10个性状可作为群体综合评价指标。(5)剑叶长、二次枝梗数、每穗粒总数3个表型性状具有较高的遗传变异、丰富的遗传多样性及与综合得分F值相关系数较高。综合以上结果发现,后期群体进行基因挖掘、品种改良以及优良育种材料的选育可以基于剑叶长、二次枝梗数及每穗粒总数3个表型性状,同时要充分利用群体株型与产量构成因子性状间的显著相关性。此外,该研究群体中极端单性状或综合得分F值较高的个体,可进一步用于品种选育。  相似文献   

15.
Vitamin E refers to eight distinct compounds collectively known as tocochromanols and can be further divided into two classes, tocotrienols and tocopherols. Tocochromanols are the major lipid-soluble antioxidants in maize (Zea mays L.) grain. Enhancing vitamin E content of maize through plant breeding has important implications for human and animal nutrition. Four inbred lines exhibiting unique variation for tocochromanol compounds were chosen from the Goodman maize diversity panel to construct two biparental mapping populations (N6xNC296 and E2558xCo125). The N6xNC296 population was developed to analyze segregation for α-tocopherol and α-tocotrienol content. The E2558WxCo125 population was developed to analyze segregation for the ratio of total tocotrienols to tocopherols. The tocochromanol variation in two replicates of each population was quantified using liquid chromatography-diode array detection. Using high-density linkage mapping, novel quantitative trait loci (QTL) in the N6xNC296 population were mapped using tocopherol ratio traits. These QTL contain the candidate gene homogentisate phytyltransferase (ZmVTE2) within the respective support intervals. This locus was not mapped in a previous genome-wide association study that analyzed tocochromanols in the Goodman diversity panel. Transgressive segregation was observed for γ- and α-tocochromanols in these populations, which facilitated QTL identification. These QTL and transgressive segregant families can be used in selection programs for vitamin E enhancement in maize. This work illustrates the complementary nature of biparental mapping populations and genome-wide association studies to further characterize genetic variation of tocochromanol content in maize grain.  相似文献   

16.
Ergot (Claviceps purpurea [Fr.] Tul.) is a serious disease of rye (Secale cereale L.) and it adversely affects the quality of grain. The present investigation was undertaken to study genotypic variability among full-sib families (FSF) of five open-pollinated (OP) winter rye populations of highly diverse origin, namely Dankovskie Selekcyine (Poland), Charkovskaja (Ukraine), NEM4 (Russia), Halo and Carokurz, both from Germany. About 50 FSF were developed at random in each population, and the FSF of each population were evaluated in separate but adjacent experiments conducted in four environments under artificial inoculation. A mixture of conidia of C. purpurea isolates was sprayed thrice during the flowering period. The materials were manually harvested at yellow-ripe stage. Resistance trait recorded was disease severity, i.e. percent ergot sclerotia in grain by weight. Mean ergot severity ranged from 2.29 to 4.08% for the five populations across environments. Significant genotypic variation (P < 0.01) due to FSF and FSF × environment interaction was observed within each population. Genotypic variation within all populations was higher than that among five populations. All populations showed high estimates of heritability (0.72–0.89). The study indicated that the evaluated OP populations are rich reservoirs of genetic variation that should also be used in hybrid breeding. Recurrent selection to further improve ergot resistance should be successful.  相似文献   

17.
采用SSR标记连锁图谱和复合区间作图法在山西灌溉和干旱胁迫条件下,对玉米(Zea mays L.)自交系黄早四×掖107组合的F3群体雌雄开花间隔天数(ASI)、结穗率和籽粒产量进行了数量性状位点(QTL)定位及基因效应分析.结果表明,在两种水分处理下,ASI、结穗率与籽粒产量的相关性均达到显著水平(P<0.05).在灌溉和干旱胁迫下,分别检测到3个和2个控制ASI的QTL,位于第1、2、3和第2、5染色体上.在灌溉条件下,在第3和第6染色体上各检测到1个控制结穗率的QTL,基因作用方式呈加性或部分显性,可解释19.9%的表型变异;在干旱条件下,在第3、 7、10染色体上共检测到4个控制结穗率的QTL,基因作用方式为显性或部分显性,可解释60.4%的表型变异.在灌溉和干旱胁迫下,控制产量的QTL分别定位在第3、6、7和第1、2、4、8染色体上,基因作用方式均以加性或部分显性为主,可解释的表型变异为7.3%~22.0%.在干旱条件下,借助连锁分子标记和基因效应分析,可构建包含ASI、结穗率和产量QTL的选择指数,用于分子标记辅助育种.  相似文献   

18.
In previous genome-wide association studies, marker–trait associations for grain yield and additional traits of agronomic importance were identified in the German winter barley (Hordeum vulgare L.) breeding gene pool. In the present study, seven doubled haploid populations segregating for the relevant alleles at the associated loci were used to get information whether these marker–trait associations can be verified in biparental populations and reliably used in applied barley breeding. The doubled haploid populations were phenotyped in field trials at two to five locations each in 1 year and genotyped by 40 trait-associated single nucleotide polymorphisms using an Illumina VeraCode GoldenGate assay. Large phenotypic variation was observed for all traits within at least one doubled haploid population. For 19 out of 58 marker–trait associations tested, the phenotypic means of both marker classes were significantly (p ≤ 0.005) different, thus confirming the association of the respective marker and the quantitative trait locus detected. For example, doubled haploid lines derived from a cross of ‘Malta’ × ‘Goldmine’ carrying different marker alleles differed by 0.41 t/ha in mean grain yield. The 19 (out of 58) marker–trait associations verified correspond to 10 (out of 27) genomic regions. Markers that were verified to be associated with a quantitative trait locus can be implemented directly in winter barley breeding for the selection of parental lines and marker-assisted pedigree selection.  相似文献   

19.
玉米群体陕综5号果穗性状遗传特征分析   总被引:4,自引:0,他引:4  
对玉米群体陕综5号果穗性状进行了综合分析,结果表明:陕综5号群体遗传基础丰富,丰产性突出,果穗各数量性状均趋正态分布。分析认为就该群体进行籽粒产量改良时,直接对行粒数、粒型、粒重选择的意义不大,而对穗行数进行选择基本不受其它性状选择的干扰。陕综5号群体的主要选择目标应是:穗行多,果穗长,结实性好。  相似文献   

20.
Summary In a study designed to develop a more efficient breeding method for concurrent protein-yield improvements in wheat (Triticum aestivum L. em. Thell), 7 base populations [2 F2's, 1 intermated F2 (IF2) and 4 partial backcross (PBC) populations] developed from biparental crosses involving 2 Canadian hard red spring (CHRS) and 2 Canadian utility (CU) wheat cultivars were evaluated in Winnipeg, Manitoba, Canada. The IF2 and PBC populations were generated for comparison with conventional F2 populations and to determine which of the 4 methods of population development would provide a more efficient means of producing potentially superior genetic recombinants. Parameters pertaining to means, variances, correlations, heritabilities and frequencies of desirable and undesirable progenies were used to evaluate the limitations to genetic gain that may be expected from selection for GY and GPC in F2, IF2, CHRS-PBC and CU-PBC populations. Analysis of protein and yield data from 105 S1 lines derived from each of the 7 populations showed the CU-PBC's to have the highest grain yield (GY) and the lowest grain protein concentration (GPC) means; and the CHRS-PBC's, the lowest GY and the highest GPC means. The F2 and IF2 populations were intermediate for both characteristics. Populations developed from the same biparental cross did not differ significantly with respect to the majority of genetic parameters. However, desirable progenies combining high GY with high GPC were more frequent in the CU-PBC, and least frequent in the CHRS-PBC populations. The observed superiority of the CU-PBC populations appeared to be related to the advantage the system has in preserving the genetic integrity of a proven cultivar, while adding desirable genetic factors from another cultivar, thus capitalizing on introgression and upgrading simultaneously.Contribution No. 549 from Agriculture Canada, Lacombe Research Station. Research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号