首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of truncated BID (tBID)-induced Cyt c release from non-synaptosomal brain mitochondria were examined. Addition of tBID to mitochondria induced partial Cyt c release which was inhibited by anti-BAK antibodies, implicating BAK. Immunoblotting showed the presence of BAK, but not BAX, in brain mitochondria. tBID did not release Cyt c from rat liver mitochondria, which lacked both BAX and BAK. This indicated that tBID did not act independently of BAX and BAK. tBID plus monomeric BAX produced twice as much Cyt c release as did tBID or oligomeric BAX alone. Neither tBID alone nor in combination with BAX induced mitochondrial swelling. In both cases Cyt c release was insensitive to cyclosporin A plus ADP, inhibitors of the mitochondrial permeability transition (mPT). Recombinant Bcl-xL inhibited Cyt c release induced by tBID alone or in combination with monomeric BAX. Koenig's polyanion, an inhibitor of VDAC, suppressed tBID-induced Cyt c release from brain mitochondria mediated by BAK but not by BAX. Thus, tBID can induce mPT-independent Cyt c release from brain mitochondria by interacting with exogenous BAX and/or with endogenous BAK that may involve VDAC. In contrast, neither adenylate kinase nor Smac/DIABLO was released from isolated rat brain mitochondria via BAK or BAX.  相似文献   

2.
tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis.   总被引:9,自引:0,他引:9  
Activation of the tumor necrosis factor R1/Fas receptor results in the cleavage of cytosolic BID to truncated tBID. tBID translocates to the mitochondria to induce the oligomerization of BAX or BAK, resulting in the release of cytochrome c (Cyt c). Here we demonstrate that in tumor necrosis factor alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-linkable mitochondrial complex that does not include BAX or BAK. Using fluorescence resonance energy transfer analysis and co-immunoprecipitation, we demonstrate that tBID-tBID interactions occur in the mitochondria of living cells. Cross-linking experiments using a tBID-GST chimera indicated that tBID forms homotrimers in the mitochondrial membrane. To test the functional consequence of tBID oligomerization, we expressed a chimeric FKBP-tBID molecule. Enforced dimerization of FKBP-tBID by the bivalent ligand FK1012 resulted in Cyt c release, caspase activation, and apoptosis. Surprisingly, enforced dimerization of tBID did not result in the dimerization of either BAX or BAK. Moreover, a tBID BH3 mutant (G94E), which does not interact with or induce the dimerization of either BAX or BAK, formed the 45-kDa complex and induced both Cyt c release and apoptosis. Thus, tBID oligomerization may represent an alternative mechanism for inducing mitochondrial dysfunction and apoptosis.  相似文献   

3.
BAX cooperates with truncated BID (tBID) and Ca2+ in permeabilizing the outer mitochondrial membrane (OMM) and releasing mitochondrial apoptogenic proteins. The mechanisms of this cooperation are still unclear. Here we show that in isolated brain mitochondria, recombinant BAX readily self-integrates/oligomerizes in the OMM but produces only a minuscule release of cytochrome c, indicating that BAX insertion/oligomerization in the OMM does not always lead to massive OMM permeabilization. Ca2+ in a mitochondrial permeability transition (mPT)-dependent and recombinant tBID in an mPT-independent manner promoted BAX insertion/ oligomerization in the OMM and augmented cytochrome c release. Neither tBID nor Ca2+ induced BAX oligomerization in the solution without mitochondria, suggesting that BAX oligomerization required interaction with the organelles and followed rather than preceded BAX insertion in the OMM. Recombinant Bcl-xL failed to prevent BAX insertion/oligomerization in the OMM but strongly attenuated cytochrome c release. On the other hand, a reducing agent, dithiothreitol (DTT), inhibited BAX insertion/oligomerization augmented by tBID or Ca2+ and suppressed the BAX-mediated release of cytochrome c and Smac/DIABLO but failed to inhibit Ca2+-induced swelling. Altogether, these data suggest that in brain mitochondria, BAX insertion/oligomerization can be dissociated from OMM permeabilization and that tBID and Ca2+ stimulate BAX insertion/oligomerization and BAX-mediated OMM permeabilization by different mechanisms involving mPT induction and modulation of the SH-redox state.  相似文献   

4.
Truncated BID (tBID), a proapoptotic BCL2 family protein, induces BAK/BAX‐dependent release of cytochrome c and other mitochondrial intermembrane proteins to the cytosol to induce apoptosis. The voltage‐dependent anion channels (VDACs) are the primary gates for solutes across the outer mitochondrial membrane (OMM); however, their role in apoptotic OMM permeabilization remains controversial. Here, we report that VDAC2?/? (V2?/?) mouse embryonic fibroblasts (MEFs) are virtually insensitive to tBID‐induced OMM permeabilization and apoptosis, whereas VDAC1?/?, VDAC3?/? and VDAC1?/?/VDAC3?/? MEFs respond normally to tBID. V2?/? MEFs regain tBID sensitivity after VDAC2 expression. Furthermore, V2?/? MEFs are deficient in mitochondrial BAK despite normal tBID–mitochondrial binding and BAX/BAK expression. tBID sensitivity of BAK?/? MEFs is also reduced, although not to the same extent as V2?/? MEFs, which might result from their strong overexpression of BAX. Indeed, addition of recombinant BAX also sensitized V2?/? MEFs to tBID. Thus, VDAC2 acts as a crucial component in mitochondrial apoptosis by allowing the mitochondrial recruitment of BAK, thereby controlling tBID‐induced OMM permeabilization and cell death.  相似文献   

5.
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAX(oligo)). We found that BAX(oligo) caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAX(oligo) also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAX(oligo) resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAX(oligo)-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAX(oligo) insertion into the OMM. Both BAX(oligo)- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H(2)O(2) release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAX(oligo) but not by alamethicin. Thus, BAX(oligo) resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.  相似文献   

6.
We review data supporting a model in which activated tBID results in an allosteric activation of BAK, inducing its intramembranous oligomerization into a proposed pore for cytochrome c efflux. The BH3 domain of tBID is not required for targeting but remains on the mitochondrial surface where it is required to trigger BAK to release cytochrome c. tBID functions not as a pore-forming protein but as a membrane targeted and concentrated death ligand. tBID induces oligomerization of BAK, and both Bid and Bak knockout mice indicate the importance of this event in the release of cytochrome c. In parallel, the full pro-apoptotic member BAX, which is highly homologous to BAK, rapidly forms pores in liposomes that release intravesicular FITC-cytochrome c approximately 20A. A definable pore progressed from approximately 11A consisting of two BAX molecules to a approximately 22A pore comprised of four BAX molecules, which transported cytochrome c. Thus, an activation cascade of pro-apoptotic proteins from BID to BAK or BAX integrates the pathway from surface death receptors to the irreversible efflux of cytochrome c. Cell Death and Differentiation (2000) 7, 1166 - 1173  相似文献   

7.
Caspase-8 cleaves BID to tBID, which targets mitochondria and induces oligomerization of BAX and BAK within the outer membrane, resulting in release of cytochrome c from the organelle. Here, we have initiated these steps in isolated mitochondria derived from control and BCL-2-overexpressing cells using synthetic BH3 peptides and subsequently analyzed the BCL members by chemical cross-linking. The results show that the BH3 domain of BID interacts with and induces an "open" conformation of BAK, exposing the BAK N terminus. This open (activated) conformer of BAK potently induces oligomerization of non-activated ("closed") conformers, causing a cascade of BAK auto-oligomerization. Induction of the open conformation of BAK occurs even in the presence of excess BCL-2, but BCL-2 selectively interacts with this open conformer and blocks BAK oligomerization and cytochrome c release, dependent on the ratio of BID BH3 and BCL-2. This mechanism of inhibition by BCL-2 also occurs in intact cells stimulated with Fas or expressing tBID. Although BID BH3 interacts with both BCL-2 and BAK, the results indicate that when BCL-2 is in excess it can sequester the BID BH3-induced activated conformer of BAK, effectively blocking downstream events. This model suggests that the primary mechanism for BCL-2 blockade targets activated BAK rather than sequestering tBID.  相似文献   

8.
The serine/threonine kinase Akt/protein kinase B inhibits apoptosis induced by a variety of stimuli, including overexpression or activation of proapoptotic Bcl-2 family members. The precise mechanisms by which Akt prevents apoptosis are not completely understood, but Akt may function to maintain mitochondrial integrity, thereby preventing cytochrome c release following an apoptotic insult. This effect may be mediated, in part, via promotion of physical and functional interactions between mitochondria and hexokinases. Here we show that growth factor deprivation induced proteolytic cleavage of the proapoptotic Bcl-2 family member BID to yield its active truncated form, tBID. Activated Akt inhibited mitochondrial cytochrome c release and apoptosis following BID cleavage. Akt also antagonized tBID-mediated BAX activation and mitochondrial BAK oligomerization, two downstream events thought to be critical for tBID-induced apoptosis. Glucose deprivation, which impaired the ability of Akt to maintain mitochondrion-hexokinase association, prevented Akt from inhibiting BID-mediated apoptosis. Interestingly, tBID independently elicited dissociation of hexokinases from mitochondria, an effect that was antagonized by activated Akt. Ectopic expression of the amino-terminal half of hexokinase II, which is catalytically active and contains the mitochondrion-binding domain, consistently antagonized tBID-induced apoptosis. These results suggest that Akt inhibits BID-mediated apoptosis downstream of BID cleavage via promotion of mitochondrial hexokinase association and antagonism of tBID-mediated BAX and BAK activation at the mitochondria.  相似文献   

9.
The multidomain pro-apoptotic proteins BAX and BAK constitute an essential gateway to mitochondrial dysfunction and programmed cell death. Among the "BCL-2 homology (BH) 3-only" members of pro-apoptotic proteins, truncated BID (tBID) has been implicated in direct BAX activation, although an explicit molecular mechanism remains elusive. We find that BID BH3 peptide alone at submicromolar concentrations cannot activate BAX or complement BID BH3 mutant-tBID in mitochondrial and liposomal release assays. Because tBID contains structurally defined membrane association domains, we investigated whether membrane targeting of BID BH3 peptide would be sufficient to restore its pro-apoptotic activity. We developed a Ni(2+)-nitrilotriacetic acid liposomal assay system that efficiently conjugates histidine-tagged peptides to a simulated outer mitochondrial membrane surface. Strikingly, nanomolar concentrations of a synthetic BID BH3 peptide that is chemically tethered to the liposomal membrane activated BAX almost as efficiently as tBID itself. These results highlight the importance of membrane targeting of the BID BH3 domain in tBID-mediated BAX activation and support a model in which tBID engages BAX to trigger its pro-apoptotic activity.  相似文献   

10.
MCL-1 inhibits BAX in the absence of MCL-1/BAX Interaction   总被引:1,自引:0,他引:1  
The BCL-2 family of proteins plays a major role in the control of apoptosis as the primary regulator of mitochondrial permeability. The pro-apoptotic BCL-2 homologues BAX and BAK are activated following the induction of apoptosis and induce cytochrome c release from mitochondria. A second class of BCL-2 homologues, the BH3-only proteins, is required for the activation of BAX and BAK. The activity of both BAX/BAK and BH3-only proteins is opposed by anti-apoptotic BCL-2 homologues such as BCL-2 and MCL-1. Here we show that anti-apoptotic MCL-1 inhibits the function of BAX downstream of its initial activation and translocation to mitochondria. Although MCL-1 interacted with BAK and inhibited its activation, the activity of MCL-1 against BAX was independent of an interaction between the two proteins. However, the anti-apoptotic function of MCL-1 required the presence of BAX. These results suggest that the pro-survival activity of MCL-1 proceeds via inhibition of BAX function at mitochondria, downstream of its activation and translocation to this organelle.  相似文献   

11.
Primary chronic lymphocytic leukemia (CLL) cells are exquisitely sensitive to ABT-737, a small molecule BCL2-antagonist, which induces many of the classical biochemical and ultrastructural features of apoptosis, including BAX/BAK oligomerization, cytochrome c release, caspase activation and chromatin condensation. Surprisingly, ABT-737 also induces mitochondrial inner membrane permeabilization (MIMP) resulting in mitochondrial matrix swelling and rupture of the outer mitochondrial membrane (OMM), so permitting the rapid efflux of cytochrome c from mitochondrial cristae and facilitating rapid caspase activation and apoptosis. BAX and BAK appear to be involved in the OMM discontinuities as they localize to the OMM break points. Notably, ABT-737 induced mitochondrial matrix swelling and OMM discontinuities in other primary B-cell malignancies, including mantle cell, follicular and marginal zone lymphoma cells but not in several cell lines studied. Thus, we describe a new paradigm of apoptosis in primary B-cell malignancies, whereby targeting of BCL2 results in all the classical features of apoptosis together with OMM rupture independent of caspase activation. This mechanism may be far more prevalent than hitherto recognized due to the failure of most methods, used to measure apoptosis, to recognize such a mechanism.  相似文献   

12.
Tsyregma Li  Bruno Antonsson 《BBA》2010,1797(1):52-62
In the present study, we compared alkali-resistant BAX insertion into the outer mitochondrial membrane, mitochondrial remodeling, mitochondrial membrane potential changes, and cytochrome c (Cyt c) release from isolated brain mitochondria triggered by recombinant BAX oligomerized with 1% octyl glucoside (BAXoligo) and by a combination of monomeric BAX (BAXmono) and caspase 8-cleaved C-terminal fragment of recombinant BID (truncated BID, tcBID). We also examined whether the effects induced by BAXoligo or by BAXmono activated with tcBID depended on induction of the mitochondrial permeability transition. The results obtained in this study revealed that tcBID plus BAXmono produced BAX insertion and Cyt c release without overt changes in mitochondrial morphology. On the contrary, treatment of mitochondria with BAXoligo resulted in BAX insertion and Cyt c release, which were accompanied by gross distortion of mitochondrial morphology. The effects of BAXoligo could be at least partially suppressed by mitochondrial depolarization. The effects of tcBID plus BAXmono were insensitive to depolarization. BAXoligo produced similar BAX insertion, mitochondrial remodeling, and Cyt c release in KCl- and in N-methyl-d-glucamine-based incubation media indicating a non-essential role for K+ influx into mitochondria in these processes. A combination of cyclosporin A and ADP, inhibitors of the mitochondrial permeability transition, attenuated Cyt c release, mitochondrial remodeling, and depolarization induced by BAXoligo, but failed to influence the effects produced by tcBID plus BAXmono. Thus, our results suggest a significant difference in the mechanisms of the outer mitochondrial membrane permeabilization and Cyt c release induced by detergent-oligomerized BAXoligo and by BAX activated with tcBID.  相似文献   

13.
BCL-2 homology 3 (BH3)-only proteins of the BCL-2 family such as tBID and BIM(EL) assist BAX-type proteins to breach the permeability barrier of the outer mitochondrial membrane, thereby allowing cytoplasmic release of cytochrome c and other active inducers of cell death normally confined to the mitochondrial inter-membrane space. However, the exact mechanism by which tBID and BIM(EL) aid BAX and its close homologues in this mitochondrial protein release remains enigmatic. Here, using pure lipid vesicles, we provide evidence that tBID acts in concert with BAX to 1) form large membrane openings through both BH3-dependent and BH3-independent mechanisms, 2) cause lipid transbilayer movement concomitant with membrane permeabilization, and 3) disrupt the lipid bilayer structure of the membrane by promoting positive monolayer curvature stress. None of these effects were observed with BAX when BIM(EL) was substituted for tBID. Based on these data, we propose a novel model in which tBID assists BAX not only via protein-protein but also via protein-lipid interactions to form lipidic pore-type non-bilayer structures in the outer mitochondrial membrane through which intermembrane prodeath molecules exit mitochondria during apoptosis.  相似文献   

14.
BH3 only proteins trigger cell death by interacting with pro- and anti-apoptotic members of the BCL-2 family of proteins. Here we report that BH3 peptides corresponding to the death domain of BH3-only proteins, which bind all the pro-survival BCL-2 family proteins, induce cell death in the absence of BAX and BAK. The BH3 peptides did not cause the release of cytochrome c from isolated mitochondria or from mitochondria in cells. However, the BH3 peptides did cause a decrease in mitochondrial membrane potential but did not induce the opening of the mitochondrial permeability transition pore. Interestingly, the BH3 peptides induced mitochondria to undergo fission in the absence of BAX and BAK. The binding of BCL-XL with dynamin-related protein 1 (DRP1), a GTPase known to regulate mitochondrial fission, increased in the presence of BH3 peptides. These results suggest that pro-survival BCL-2 proteins regulate mitochondrial fission and cell death in the absence of BAX and BAK.  相似文献   

15.
In the absence of an apoptotic signal, BAX adopts a conformation that constrains the protein from integrating into mitochondrial membranes. Here, we show that caspases, including caspase-8, can initiate BAX insertion into mitochondria in vivo and in vitro. The cleavage product of caspase-8, tBID, induced insertion of BAX into mitochondria in vivo, and reconstitution in vitro showed that tBID, either directly or indirectly, relieved inhibition of the BAX transmembrane signal-anchor by the NH2-terminal domain, resulting in integration of BAX into mitochondrial membrane. In contrast to these findings, however, Bid-null mouse embryo fibroblasts supported Bax insertion into mitochondria in response to death signaling by either TNFalpha or E1A, despite the fact that cytochrome c release from the organelle was inhibited. We conclude, therefore, that a parallel Bid-independent pathway exists in these cells for mitochondrial insertion of Bax and that, in the absence of Bid, cytochrome c release can be uncoupled from Bax membrane insertion.  相似文献   

16.
BID, a proapoptotic BCL-2 family member, plays an essential role in the tumor necrosis factor alpha (TNF-alpha)/Fas death receptor pathway in vivo. Activation of the TNF-R1 receptor results in the cleavage of BID into truncated BID (tBID), which translocates to the mitochondria and induces the activation of BAX or BAK. In TNF-alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-linkable mitochondrial complex. Here we describe the biochemical purification of this complex and the identification of mitochondrial carrier homolog 2 (Mtch2) as part of this complex. Mtch2 is a conserved protein that is similar to members of the mitochondrial carrier protein family. Our studies with mouse liver mitochondria indicate that Mtch2 is an integral membrane protein exposed on the surface of mitochondria. Using blue-native gel electrophoresis we revealed that in viable FL5.12 cells Mtch2 resides in a protein complex of ca. 185 kDa and that the addition of TNF-alpha to these cells leads to the recruitment of tBID and BAX to this complex. Importantly, this recruitment was partially inhibited in FL5.12 cells stably expressing BCL-X(L). These results implicate Mtch2 as a mitochondrial target of tBID and raise the possibility that the Mtch2-resident complex participates in the mitochondrial apoptotic program.  相似文献   

17.
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.  相似文献   

18.
Hollville E  Martin SJ 《Cell》2012,148(5):845-846
BAX/BAK activation leading to mitochondrial outer-membrane permeabilization is a key commitment point in apoptosis. Chipuk et al. now identify two sphingolipids as specific cofactors for BAX/BAK activation that lower the threshold for apoptosis-associated cytochrome c release. Association of mitochondria with other cellular membrane compartments is required for BAK/BAX exposure to these sphingolipids.  相似文献   

19.
Tsyregma Li  Bruno Antonsson 《BBA》2008,1777(11):1409-1421
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAXoligo). We found that BAXoligo caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAXoligo also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAXoligo resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAXoligo-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAXoligo insertion into the OMM. Both BAXoligo- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H2O2 release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAXoligo but not by alamethicin. Thus, BAXoligo resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.  相似文献   

20.
The mechanisms of Ca2+-induced release of Cytochrome c (Cyt c) from rat brain mitochondria were examined quantitatively using a capture ELISA. In 75 or 125 mm KCl-based media 1.4 micromol Ca2+/mg protein caused depolarization and mitochondrial swelling. However, this resulted in partial Cyt c release only in 75 mm KCl. The release was inhibited by Ru360, an inhibitor of the Ca2+ uniporter, and by cyclosporin A plus ADP, a combination of mitochondrial permeability transition inhibitors. Transmission electron microscopy (TEM) revealed that Ca2+-induced swelling caused rupture of the outer membrane only in 75 mm KCl. Koenig's polyanion, an inhibitor of mitochondrial porin (VDAC), enhanced swelling and amplified Cyt c release. Dextran T70 that is known to enhance mitochondrial contact site formation did not prevent Cyt c release. Exposure of cultured cortical neurons to 500 microM glutamate for 5 min caused Cyt c release into the cytosol 30 min after glutamate removal. MK-801 or CsA inhibited this release. Thus, the release of Cyt c from CNS mitochondria induced by Ca2+ in vitro as well as in situ involved the mPT and appeared to require the rupture of the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号