首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The report in 1971 by Comuet and Astier‐Manifacier that Chinese cabbage contains an active RNA‐dependent RNA polymerase has been extended to all plants studied. This has met with much opposition because the central dogma of molecular biology requires no replication mechanism for RNA. Only upon RNA virus infection are such enzymes needed, and it was generally believed that these were always and only virus‐coded. The purification and characterization of several of these plant viruses will be reviewed, with particular reference to the fact that while their amount in plant tissue is variably increased by various RNA virus infections their nature is unaffected by the viral genome and is strictly host‐specific. It will be noted, however, that in a specific instance viral infection has been shown to affect an important property of the enzyme. Also, it has become evident that certain plant viruses resemble animal picorna viruses (e.g., polio virus) and that these viruses carry an RNA polymerase gene. The same may be true, but has not been proven, for a small group of plant viruses that shows resemblances to the prokaryotic RNA phages in which a viral gene product together with host proteins form the RNA polymerase. An important question that remains to be solved in future work is the role of RNA polymerases in normal plant cell biology. Also, the mechanism by which viral infection causes the enzyme to become largely membrane or organelle bound and possibly conformationally changed in the process remains to be elucidated.  相似文献   

2.
3.
The effects of cyclohexanecarboxaldehyde, benzaldehyde and protocatechualdehyde on the activities of DNA polymerases α, β and E. coli DNA polymerase I were investigated. On direct addition of the aldehydes to the DNA polymerase assay mixture containing activated DNA or poly(dA) (dT)12–18 as a template, DNA polymerase α was most strongly inhibited by the aldehyde compounds, while DNA polymerases β and I were resistant to such aldehyde inhibition. On preincubation of the enzymes with aldehyde, both DNA polymerases α and β were inactivated; however, DNA polymerase β was protected from the inactivation when activated DNA was added to the preincubation mixture. The inhibition of DNA polymerase α by aldehyde was noncompetitive with regard to the substrate dNTP and competitive with regard to the template DNA. The extent of inhibition of DNA polymerase α by aldehyde was partly reduced by the addition of cysteine to the reaction mixture.  相似文献   

4.
5.
Translesion synthesis is a fundamental biological process that enables DNA replication across lesion sites to ensure timely duplication of genetic information at the cost of replication fidelity, and it is implicated in development of cancer drug resistance after chemotherapy. The eukaryotic Y-family polymerase Rev1 is an essential scaffolding protein in translesion synthesis. Its C-terminal domain (CTD), which interacts with translesion polymerase ζ through the Rev7 subunit and with polymerases κ, ι, and η in vertebrates through the Rev1-interacting region (RIR), is absolutely required for function. We report the first solution structures of the mouse Rev1 CTD and its complex with the Pol κ RIR, revealing an atypical four-helix bundle. Using yeast two-hybrid assays, we have identified a Rev7-binding surface centered at the α2-α3 loop and N-terminal half of α3 of the Rev1 CTD. Binding of the mouse Pol κ RIR to the Rev1 CTD induces folding of the disordered RIR peptide into a three-turn α-helix, with the helix stabilized by an N-terminal cap. RIR binding also induces folding of a disordered N-terminal loop of the Rev1 CTD into a β-hairpin that projects over the shallow α1-α2 surface and creates a deep hydrophobic cavity to interact with the essential FF residues juxtaposed on the same side of the RIR helix. Our combined structural and biochemical studies reveal two distinct surfaces of the Rev1 CTD that separately mediate the assembly of extension and insertion translesion polymerase complexes and provide a molecular framework for developing novel cancer therapeutics to inhibit translesion synthesis.  相似文献   

6.
3′-deoxyadenosine triphosphate inhibited invitro [3H]UMP incorporation by RNA-dependent RNA polymerases from tobacco and cowpea plants. The inhibition of [3H]UMP incorporation could be reversed by simultaneous addition of higher ATP concentrations but not with increasing concentrations of UTP or when excess ATP was added 10 min after the inhibitor. These results suggest 3′-deoxyadenosine triphosphate competes specifically with ATP in reaction mixtures and results in premature termination of RNA synthesis invitro by RNA-dependent RNA polymerase.  相似文献   

7.
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.  相似文献   

8.
The similarity of the morphology and of DNA composition, the homology of the component patterns of DNA-dependent RNA polymerases and their immunochemical crossreactivity support the conclusion that several extreme thermoacidophiles are related to each other. We name two new species of the genus Sulfolobus. The first, Sulfolobus solfataricus (DSM 1616 and DSM 1617) has the same GC content in its DNA and the same general properties as S. acidocaldarius, but differs significantly from the latter species in the molecular weights of the 11 components of its RNA polymerase and in the salt requirements of this enzyme. The second, Sulfolobus brierleyi, DSM 1651, differs from S. acidocaldarius in several respects. The cells show much less stability at neutral pH. The GC content is significantly lower. The RNA polymerase lacks two components present in the enzymes from the other species. The residual 9 components show larger size differences from the homologous subunits of the S. acidocaldarius enzyme.Like the enzyme from S. solfataricus, the polymerase from S. brierleyi yields an incomplete immunochemical crossreaction with an antibody against the RNA polymerase from S. acidocaldarius.The isolates DSM 1616 and DSM 1617 of Sulfolobus solfataricus are probably identical with or similar to the Caldariella strains MT 3 and MT 4, isolated by de Rosa et al. (1975).Like all other known archaebacterial RNA polymerases the enzymes from these species are insensitive to rifampicin and streptolydigin.Abbreviations G+C Guanine + Cytosine - HPLC High Performance Liquid Chromatography - SAB Similarity coefficient between two different RNAs as defined by Fox et al. (1977) - SDS Sodium dodecylsulfate (Sodium laurylsulfate), SSC 0.15 M NaCl, 0.015 M Na Citrate pH 7.4  相似文献   

9.
10.
Brown JA  Pack LR  Sanman LE  Suo Z 《DNA Repair》2011,10(1):24-33
The base excision repair (BER) pathway coordinates the replacement of 1-10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1-10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5'-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER.  相似文献   

11.
12.
Specialized DNA polymerases are required in both prokaryotic and eukaryotic cells for bypassing sites of template DNA damage that arrest high-fidelity DNA replication. Recent studies in the literature provide hints of the complexity of DNA switching between polymerases for translesion DNA synthesis (TLS) and those for normal DNA replication.  相似文献   

13.
14.
Template-primer dependent inactivation of human DNA polymerase and Klenow fragment of E. coli DNA polymerase I by adenosine 2,3-riboepoxide 5-triphosphate was used for quantitative analysis of the Kd values for oligonucleotide primers of different length. The Kd values are smaller by a factor of 2.5 than the Km values for the same primers determined in the reaction of DNA polymerization in the case of DNA polymerase . The Kd and Km values are nearly the same for Klenow fragment. Such approach to the determination of Km/Kd ratio can likely be used for detailed quantitative analysis of DNA polymerases.Abbreviations epATP adenosine 2,3-riboepoxide 5-triphosphate - KF Klenow fragment of E. coli DNA polymerase I - Pol I E. coli DNA polymerase I - Pol human placenta DNA polymerase   相似文献   

15.
Oxidized DNA precursors can cause mutagenesis and carcinogenesis when they are incorporated into the genome. Some human Y-family DNA polymerases (Pols) can effectively incorporate 8-oxo-dGTP, an oxidized form of dGTP, into a position opposite a template dA. This inappropriate G:A pairing may lead to transversions of A to C. To gain insight into the mechanisms underlying erroneous nucleotide incorporation, we changed amino acids in human Polη and Polκ proteins that might modulate their specificity for incorporating 8-oxo-dGTP into DNA. We found that Arg61 in Polη was crucial for erroneous nucleotide incorporation. When Arg61 was substituted with lysine (R61K), the ratio of pairing of dA to 8-oxo-dGTP compared to pairing of dC was reduced from 660:1 (wild-type Polη) to 7 : 1 (R61K). Similarly, Tyr112 in Polκ was crucial for erroneous nucleotide incorporation. When Tyr112 was substituted with alanine (Y112A), the ratio of pairing was reduced from 11: 1 (wild-type Polκ) to almost 1: 1 (Y112A). Interestingly, substitution at the corresponding position in Polη, i.e. Phe18 to alanine, did not alter the specificity. These results suggested that amino acids at distinct positions in the active sites of Polη and Polκ might enhance 8-oxo-dGTP to favor the syn conformation, and thus direct its misincorporation into DNA.  相似文献   

16.
17.
(S(C5'), R(P)) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.  相似文献   

18.
The action of Bacillus thuringiensis exotoxin, a structural analogue of ATP, on mouse liver DNA-dependent RNA polymerases was studied and its effects were compared with those of alpha-amanitin and cordycepin. (1) Administration of exotoxin in vivo caused a marked decrease in RNA polymerase activity of isolated nuclei at various concentrations of Mg(2+), Mn(2+) and (NH(4))(2)SO(4). A similar action was recorded after addition of exotoxin to isolated nuclei from control or exotoxin-treated mice. (2) Chromatographic separation of nuclear RNA polymerases from mice treated in vivo with exotoxin showed a drastic decrease of the peak of nucleoplasmic RNA polymerase, whereas the peak of nucleolar RNA polymerase remained unaltered. The same effect was observed after administration of alpha-amanitin in vivo, but cordycepin did not alter the relative amounts of the two main RNA polymerase peaks. (3) Administration of exotoxin in vivo did not alter the template activity of isolated DNA or chromatin tested with different fractions of RNA polymerase from control or exotoxin-treated mice. (4) Addition of exotoxin to isolated liver RNA polymerases inhibited both enzyme fractions. However, the alpha-amanitin-sensitive RNA polymerase was also 50-100-fold more sensitive to exotoxin inhibition than was the alpha-amanitin-insensitive RNA polymerase. Kinetic analysis indicated the exotoxin produces a competitive inhibition with ATP on the nucleolar enzyme, but a mixed type of inhibition with nucleoplasmic enzyme. The results obtained indicate that the B. thuringiensis exotoxin inhibits liver RNA synthesis by affecting nuclear RNA polymerases, showing a preferential inhibition of the nucleoplasmic alpha-amanitin-sensitive RNA polymerase.  相似文献   

19.
The main strategy used by pro-and eukaryotic cells for replication of damaged DNA is translesion synthesis (TLS). Here, we investigate the TLS process catalyzed by DNA polymerases β and λ on DNA substrates using mono-or dinucleotide gaps opposite damage located in the template strand. An analog of a natural apurinic/apyrimidinic site, the 3-hydroxy-2-hydroxymetylthetrahydrofuran residue (THF), was used as damage. DNA was synthesized in the presence of either Mg2+ or Mn2+. DNA polymerases β and λ were able to catalyze DNA synthesis across THF only in the presence of Mn2+. Moreover, strand displacement synthesis was not observed. The primer was elongated by only one nucleotide. Another unusual aspect of the synthesis is that dTTP could not serve as a substrate in all cases. dATP was a preferential substrate for synthesis catalyzed by DNA polymerase β. As for DNA polymerase λ, dGMP was the only incorporated nucleotide out of four investigated. Modified on heterocyclic base photoreactive analogs of dCTP and dUTP showed substrate specificity for DNA polymerase β. In contrast, the dCTP analog modified on the exocyclic amino group was a substrate for DNA polymerase λ. We also observed that human replication protein A inhibited polymerase incorporation by both DNA polymerases β and λ on DNA templates containing damage.  相似文献   

20.
To counteract the deleterious effects of DNA damage, cells are equipped with specialized polymerases to bypass DNA lesions. Previous biochemical studies revealed that DinB family DNA polymerases, including Escherichia coli DNA polymerase IV and human DNA polymerase κ, efficiently incorporate the correct nucleotide opposite some N(2)-modified 2'-deoxyguanosine derivatives. Herein, we used shuttle vector technology and demonstrated that deficiency in Polk or Poli in mouse embryonic fibroblast (MEF) cells resulted in elevated frequencies of G→T and G→A mutations at N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) and N(2)-carboxymethyl-2'-deoxyguanosine (N(2)-CMdG) sites. Steady-state kinetic measurements revealed that human DNA polymerase ι preferentially inserts the correct nucleotide, dCMP, opposite N(2)-CEdG lesions. In contrast, no mutation was found after the N(2)-CEdG- and N(2)-CMdG-bearing plasmids were replicated in POLH-deficient human cells or Rev3-deficient MEF cells. Together, our results revealed that, in mammalian cells, both polymerases κ and ι are necessary for the error-free bypass of N(2)-CEdG and N(2)-CMdG. However, in the absence of polymerase κ or ι, other translesion synthesis polymerase(s) could incorporate nucleotide(s) opposite these lesions but would do so inaccurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号