首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
甲基化修饰是蛋白翻译后修饰的主要方式之一。真菌中,多种赖氨酸甲基转移酶能够执行组蛋白特定位点上赖氨酸的甲基化。组蛋白上赖氨酸的甲基化与真菌DNA的复制、转录以及异染色质的形成相关。甲基化参与了多种生物学过程,如真菌发育、昼夜节律调节、次级代谢基因簇表达、水解酶合成、致病真菌毒力形成。本文结合笔者工作,对目前真菌中已经发现的组蛋白赖氨酸甲基转移酶的命名、分类、结构域特征、催化域的三维结构以及它们所执行的甲基化在各种真菌中的作用进行了总结,提出了目前研究的不足并对未来的研究方向和内容进行了展望。  相似文献   

2.
DNA甲基化是最主要的表观遗传修饰之一,主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立。细胞分裂过程中甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶成为5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶,从而起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。本文对近年来DNA甲基化修饰酶的结构与功能研究进行讨论。  相似文献   

3.
蛋白质精氨酸甲基化是真核生物中一种广泛存在并在进化上保守的蛋白质翻译后修饰,由蛋白质精氨酸甲基转移酶(PRMT)催化完成。动物中的研究表明,PRMT通过催化多种RNA结合蛋白的精氨酸甲基化而参与调控细胞多种重要的生命过程,如RNA代谢、细胞增殖以及信号转导等。概述真核生物中精氨酸甲基化对不同的RNA结合蛋白的功能调控,并重点阐述该翻译后修饰在转录后加工过程中的重要作用;介绍高等植物拟南芥中蛋白质精氨酸甲基转移酶参与转录后调控的最新研究进展,并对精氨酸甲基化修饰参与调控植物RNA结合蛋白的功能及今后可能的研究方向进行讨论。  相似文献   

4.
卢化  金城 《微生物学通报》2014,41(3):539-544
20世纪50年代中期,在古菌的表层(S-层)首次发现了糖蛋白;21世纪初又在空肠弯曲菌(Campylobacter jejuni)中发现了蛋白质N-糖基化修饰。由此,同行开始认识到,蛋白质的糖基化修饰广泛存在于古菌、细菌及真核生物三域中。近十年来,古菌蛋白质糖基化修饰的研究取得了进展,特别是古菌蛋白质N-糖基化修饰研究进展快速。但对古菌糖蛋白O-糖基化修饰和脂修饰的了解甚少。本文综述了古菌蛋白质糖基化修饰的研究进展。  相似文献   

5.
总结了组蛋白精氨酸甲基化修饰体系的最新研究进展.组蛋白精氨酸甲基化修饰在基因转录调控中发挥着十分重要的作用,这类修饰由蛋白精氨酸甲基转移酶(PRMTs)介导,其中PRMT1和PRMT4的甲基化修饰与基因的转录激活作用相关,PRMT5和PRMT6的甲基化修饰则与基因的转录抑制作用相关.组蛋白精氨酸的甲基化是一个动态的可逆过程,催化组蛋白精氨酸的去甲基化是由“精氨酸去甲基化酶”介导的.  相似文献   

6.
RNA可以被100余种化学修饰所修饰。这些化学修饰以甲基化为主,广泛分布于各种类型的RNA中,如r RNA、t RNA、sn RNA、sno RNA和m RNA等,其中针对m RNA内部修饰丰度最高的6-甲基腺嘌呤(m~6A)的研究最为深入。m~6A修饰酶(甲基转移酶METTL3/METTL14/WTAP和去甲基化酶ALKBH5与FTO)和结合蛋白YTHDF2、YTHDF1与YTHDC1的发现,证明了RNA甲基化修饰同DNA甲基化修饰一样是动态可逆的,从而将RNA甲基化修饰由微调控机制提升到表观转录组新层次。而候选m~5C修饰甲基转移酶NSUN家族蛋白和去甲基化酶TET蛋白的初步鉴定,丰富了RNA甲基化修饰表观转录组研究内涵。RNA甲基化介导的表观转录组学调控和作用已成为RNA生物学新研究领域。现重点回顾和展望RNA的m~6A和m~5C甲基化修饰特征及其潜在生物学功能。  相似文献   

7.
DNA甲基化是生命体最主要的表观遗传修饰之一。哺乳动物DNA甲基化主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶(5-methylcytosine,5m C)。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立,甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。现结合国内外同行研究进展,介绍课题组近年来对DNA甲基化修饰酶的结构与功能研究。  相似文献   

8.
DNA甲基转移酶的表达调控及主要生物学功能   总被引:8,自引:0,他引:8  
苏玉  王溪  朱卫国 《遗传》2009,31(11):1087-1093
DNA甲基化是表观遗传学的重要部分, 同组蛋白修饰相互作用, 通过改变染色质结构, 调控基因表达。在哺乳类细胞或人体细胞中, DNA甲基化与细胞的增殖、衰老、癌变等生命现象有着重大关系。对催化DNA甲基化的DNA甲基转移酶(DNA methyltransferase, Dnmt)的研究可以揭示DNA甲基化对基因表达调控的机制, 从而研究与之相关的重要生命活动。文章以DNA甲基转移酶作为切入点, 探讨DNA甲基转移酶在基因表达调控中发挥的作用及其主要生物学功能。  相似文献   

9.
组蛋白甲基化是细胞中一种普遍而重要的表观遗传修饰方式,由组蛋白甲基转移酶完成.对组蛋白甲基化修饰认识已有相当长的时间,但直到最近几年由于组蛋白甲基化修饰酶的发现才使人们逐渐认识到组蛋白甲基化修饰有广泛的生物学功能.本文拟从组蛋白甲基转移酶、组蛋白甲基化的功能以及组蛋白甲基化与DNA甲基化的关系等方面综述这一领域的研究进展.  相似文献   

10.
李语丽于军  宋述慧 《遗传》2013,35(12):1340-1351
RNA酶促共价修饰研究, 尤其是m6A(6-甲基腺嘌呤), 是RNA生物学研究的一个新兴领域。m6A是真核生物mRNA内部序列中最常见的一种转录后修饰形式, 由包含3个独立组分的复合物mRNA: m6A甲基转移酶催化生成。最新研究发现肥胖相关蛋白FTO可以脱掉m6A上的甲基, 表明该甲基化过程是可逆的。抑制或敲除m6A甲基转移酶会引起重要的表型变化, 但是由于过去的检测方法受限, m6A确切的作用机制目前为止还不甚清楚。二代测序技术结合免疫沉淀方法为大规模检测m6A修饰并研究其作用机制提供了可能。文章主要综述了m6A的发现史、生成机制、组织和基因组分布、检测方法、生物学功能等及其最新研究进展, 并通过比较3种IP-seq技术和数据分析的异同及优缺点, 对m6A这种RNA表观修饰研究中尚未解决的问题进行了讨论。  相似文献   

11.
12.
Methylation in vivo is a post-translational modification observed in several organisms belonging to eucarya, bacteria, and archaea. Although important implications of this modification have been demonstrated in several eucaryotes, its biological role in hyperthermophilic archaea is far from being understood. The aim of this work is to clarify some effects of methylation on the properties of beta-glycosidase from Sulfolobus solfataricus, by a structural comparison between the native, methylated protein and its unmethylated counterpart, recombinantly expressed in Escherichia coli. Analysis by Fourier transform infrared spectroscopy indicated similar secondary structure contents for the two forms of the protein. However, the study of temperature perturbation by Fourier transform infrared spectroscopy and turbidimetry evidenced denaturation and aggregation events more pronounced in recombinant than in native beta-glycosidase. Red Nile fluorescence analysis revealed significant differences of surface hydrophobicity between the two forms of the protein. Unlike the native enzyme, which dissociated into SDS-resistant dimers upon exposure to the detergent, the recombinant enzyme partially dissociated into monomers. By electrospray mapping, the methylation sites of the native protein were identified. A computational analysis of beta-glycosidase three-dimensional structure and comparisons with other proteins from S. solfataricus revealed analogies in the localization of methylation sites in terms of secondary structural elements and overall topology. These observations suggest a role for the methylation of lysyl residues, located in selected domains, in the thermal stabilization of beta-glycosidase from S. solfataricus.  相似文献   

13.
Protein methylation plays an integral role in cellular signaling, most notably by modulating proteins bound at chromatin and increasingly through regulation of non-histone proteins. One central challenge in understanding how methylation acts in signaling is identifying and measuring protein methylation. This includes locus-specific modification of histones, on individual non-histone proteins, and globally across the proteome. Protein methylation has been studied traditionally using candidate approaches such as methylation-specific antibodies, mapping of post-translational modifications by mass spectrometry, and radioactive labeling to characterize methylation on target proteins. Recent developments have provided new approaches to identify methylated proteins, measure methylation levels, identify substrates of methyltransferase enzymes, and match methylated proteins to methyl-specific reader domains. Methyl-binding protein domains and improved antibodies with broad specificity for methylated proteins are being used to characterize the “protein methylome”. They also have the potential to be used in high-throughput assays for inhibitor screens and drug development. These tools are often coupled to improvements in mass spectrometry to quickly identify methylated residues, as well as to protein microarrays, where they can be used to screen for methylated proteins. Finally, new chemical biology strategies are being used to probe the function of methyltransferases, demethylases, and methyl-binding “reader” domains. These tools create a “system-level” understanding of protein methylation and integrate protein methylation into broader signaling processes.  相似文献   

14.
15.
Protein arginine methylation is a well-known post-translational modification that has been shown to occur in rabbit reticulocyte in vitro translation lysates (RRL); however, it is not known whether this is a general feature of in vitro-produced proteins from other eukaryotic cell-free translation systems, particularly insect-derived lysates (ICL). Because methylation can affect protein localization, RNA binding and protein-protein interactions this may be of great importance as in vitro-produced proteins are often used in assays of protein function. Here, I report the presence of base-stable and base-labile methyltransferase activities in RRL, ICL and wheat germ in vitro extracts (WGE). Indeed, the presence of CARM1 in RRL and ICL and a class II protein arginine methyltransferase activity (PRMT5/7) is documented in all three systems. Additionally, the lysine methyltransferase that modifies eukaryotic elongation factor 1A (eEF-1A) was detected in ICL and WGE. Importantly, using a defined set of substrates under identical conditions I show that all three in vitro systems contain different complements of the various methyltransferases. These data suggest that three systems can be used in a complementary fashion to investigate the effect(s) of post-translational modification on protein function.  相似文献   

16.
Methylation of protein arginines represents an important post-translational modification mechanism, which has so far primarily been characterized in mammalian cells. In this work, we successfully identified and characterized arginine methylation as a crucial type of post-translational modification in the activity regulation of the cytosolic translation repressor protein NAB1 in the plant model organism Chlamydomonas reinhardtii. NAB1 represses the cytosolic translation of light-harvesting protein encoding mRNAs by sequestration into translationally silent messenger ribonucleoprotein complexes (mRNPs). Protein arginine methylation of NAB1 could be demonstrated by PRMT1 catalyzed methylation of recombinant NAB1 in vitro, and by immunodetection of methylated NAB1 arginines in vivo. Mass spectrometric analyses of NAB1 purified from C. reinhardtii revealed the asymmetric dimethylation of Arg90 and Arg92 within GAR motif I. Inhibition of arginine methylation by either adenosine-2'-3'-dialdehyde (AdOx) or 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid) sodium salt hydrate (AMI-1) caused a dark-green phenotype characterized by the increased accumulation of light-harvesting complex proteins, and indicating a reduced translation repressor activity of NAB1. The extent of NAB1 arginine methylation depends on the growth conditions, with phototrophic growth causing a high methylation state and heterotrophic growth resulting in lowered methylation of the protein. In addition, we could show that NAB1 activity regulation by arginine methylation operates independently from cysteine-based redox control, which has previously been shown to control the activity of NAB1.  相似文献   

17.
Protein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate arginine residues on histones and other proteins. PRMTs play a crucial role in influencing various cellular functions, including cellular development and tumorigenesis. Arginine methylation by PRMTs is found on both nuclear and cytoplasmic proteins. Recently, there is increasing evidence regarding post-translational modifications of non-histone proteins by PRMTs, illustrating the previously unknown importance of PRMTs in the regulation of various cellular functions by post-translational modifications. In this review, we present the recent developments in the regulation of non-histone proteins by PRMTs.  相似文献   

18.
Ong SE  Mittler G  Mann M 《Nature methods》2004,1(2):119-126
Protein methylation is a stable post-translational modification (PTM) with important biological functions. It occurs predominantly on arginine and lysine residues with varying numbers of methyl groups, such as mono-, di- or trimethyl lysine. Existing methods for identifying methylation sites are laborious, require large amounts of sample and cannot be applied to complex mixtures. We have previously described stable isotope labeling by amino acids in cell culture (SILAC) for quantitative comparison of proteomes. In heavy methyl SILAC, cells metabolically convert [(13)CD(3)]methionine to the sole biological methyl donor, [(13)CD(3)]S-adenosyl methionine. Heavy methyl groups are fully incorporated into in vivo methylation sites, directly labeling the PTM. This provides markedly increased confidence in identification and relative quantitation of protein methylation by mass spectrometry. Using antibodies targeted to methylated residues and analysis by liquid chromatography-tandem mass spectrometry, we identified 59 methylation sites, including previously unknown sites, considerably extending the number of in vivo methylation sites described in the literature.  相似文献   

19.
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation/nitration/hydroxylation, Lys acetylation/acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.  相似文献   

20.
刘舒婷  苏杨  姚玉峰 《微生物学报》2017,57(11):1698-1707
蛋白质翻译后修饰是调控蛋白质生物学功能的重要步骤之一。甲基化修饰作为蛋白质翻译后修饰的一种重要形式,参与了真核生物和原核生物的多种细胞进程。本文综述了目前蛋白质甲基化的研究进展,包括真核生物、原核生物,组蛋白和非组蛋白,以及多种氨基酸位点的甲基化修饰。这些发现丰富了人们对蛋白质甲基化修饰的认识,对深入了解蛋白质翻译后修饰的功能具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号