首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
我们提出一种高动态光学血管造影成像(HDOA)方法来实现活体生物样本血管造影成像.该方法通过设置高动态范围曝光时间,依据动态积分效应和吸收效应以实现高动态积分时间调制.通过该方法,不仅能够同时获得各级血管清晰的造影图像,还能消除样品厚度不均、吸收系数不同对成像造成的影响.论文以仿体和活体金鱼为样品,通过实验验证了HDOA方法根据动态积分调制效应和吸收效应,能有效实现各级血管同时成像.  相似文献   

2.
吸收强度涨落调制成像(AIFM)方法是基于血红细胞和背景组织对低相干光照明的吸收差异,通过在频域分离动态的血红细胞信号和静态的背景信号,实现对近透明活体生物样本全场无标记的光学血管造影成像. 但此成像方法需采集较长的原始图像序列,系统漂移或生物抖动会造成图像模糊,难以实现对某些特定区域的血管造影成像. 本文提出一种结合AIFM成像和归一化互相关算法的新方法来提升血管造影图像的质量:原始的图像序列被分成若干短时序列,每个短时序列先利用AIFM成像算法重构得到全场的血管造影图像;再利用归一化的互相关算法将所有的短时重构图像与第一帧重构图像相匹配,并融合得到最终的血管造影片. 我们以活体鸡蛋胚胎为样品,通过实验验证了利用短时归一化互相关AIFM成像方法,能够消除鸡胚胎心跳引起的图像模糊,从而获得高分辨率和信噪比的心血管造影片,对研究活体动物心脑血管疾病具有重要应用价值.  相似文献   

3.
本文提出了一种基于空间频率滤波的多曝光融合的高动态投影层析三维成像方法,实现了活体斑马鱼(17 mm × 4 mm,最大厚度为2.33 mm,最小厚度为0.29 mm)的三维结构成像. 通过相机采用不同曝光时间记录系列吸收图像,将每张图像取变换到频域去除低频后,将各张滤波后叠加并逆傅里叶变换回空域,对变换后的图像进行归一化处理,最终获得高动态图像. 在每个投影角度获得这种高动态吸收投影图像,进行滤波反投影算法重建,获得高动态的整条斑马鱼三维结构信息. 实验成像结果表明,这种空间频率滤波多曝光融合的高动态光学投影层析三维成像研究,可以获得复杂结构更丰富的空间信息,对斑马鱼等模式生物早期胚胎生长发育进程进行监测和定量评估有一定的应用前景.  相似文献   

4.
本文提出了一种基于非线性热扩散效应的光声二次谐波显微SH-PAM成像技术,用于实现亚衍射极限光声成像。生物组织受到强度调制的高斯激光束辐射时,组织吸收光子形成高斯分布的温度场,由于热扩散系数非线性热效应引起的非线性光声PA效应,从而产生光声二次谐波信号。模拟和试验结果均表明,重建后的光声二次谐波成像的横向分辨率超过了传统光学成像分辨率。本文通过仿体样品验证了该方法的可行性,并且对人表层皮肤细胞进行了成像,以证明其对生物样品的成像能力。该方法扩展了传统光声成像的范围,为超分辨成像开辟了新的可能性,为生物医学成像和材料检测提供了新的方法。  相似文献   

5.
目的 本文提出了一种基于主成分分析(PCA)的双对比光学投影断层成像(DC-OPT)方法,以获得活体中血流网络和骨骼的三维可视化。方法 使用主成分分析方法来提取吸收图像和血流图像,原始图像序列的第一主成分用于获取吸收图像;通过计算每个像素的调制深度来获得流动图像。不同投影位置的流动和吸收对比图像被用于三维血流网络和骨骼的同步重建。结果 采用PCA和OPT相结合的方法,通过将动态血流信号和静态背景信号分离,实现了对微生物样本的血流网络和骨骼的三维成像。结论 本文研究的新颖之处在于通过同一光学系统获得了快速、同步、双对比的血流网络和骨骼三维图像。实验结果可用于活体生物的生理发育研究。  相似文献   

6.
多焦点多光子显微技术及其研究进展   总被引:1,自引:0,他引:1  
多焦点多光子显微技术(multifocal multiphoton microscopy,MMM)提高了激发光能的利用率和成像速度,可以实现样品的三维快速多光子激发荧光显微成像,并具有对活体样品损伤小,成像深度大,图像信噪比高等优点.详细阐述了MMM的实现方法及其研究进展,包括同时时间和光谱分辨的MMM(simulta...  相似文献   

7.
光声成像突破了传统的光学成像和超声成像在生物组织成像领域的困境,该技术基于光声(Photoacoustic,PA)效应,脉冲激光激励下的生物组织产生超声信号,超声信号被接收后,通过反投影算法将其携带的时间信息和强度信息转化为能够反映生物组织吸收结构和分布的可视化图像。基于不同生物组织的光吸收差异,当激发光强度均匀且稳定时,光声成像反映的就是该物质对于该波长光的吸收特性。本文中,我们基于导管式的血管内光声断层扫描平台结合多波长激发的光声成像算法开发了基于光谱编码的血管内光声组分成像系统,实现了在离体血管斑块中脂质组分的定量成像,高分辨获得了脂质核心的大小形态和边界信息,表征了斑块内的脂质相对含量。  相似文献   

8.
无损光声成像技术结合了纯光学成像高选择特性和纯超声成像中深穿透特性的优点,克服了光散射限制,实现了对活体深层组织的高分辨、高对比度成像。该成像技术对内源物质例如脱氧血红蛋白、含氧血红蛋白、黑色素、脂质等进行成像,提供了活体生物组织结构和功能信息,已经在生物医学领域表现出巨大的应用前景。然而,很多与病理过程相关的特征分子的光吸收能力较弱,在活体环境中难以被光声成像系统所识别,从而限制了光声成像技术的应用范围。基于功能纳米探针的光声成像-光声分子成像极大拓展光声成像的应用范围,可以在活体层面对病理过程进行分子水平的定性和定量研究,将为实现目标疾病的早期诊断提供强大的技术支持。本文发展在近红外具有窄吸收线宽(半高宽仅为60 nm)的纳米金锥作为新型的光声探针。通过选择不同径长比的纳米金锥,可以任意调节纳米金锥的吸收峰。通过调谐激光器的波长,可实现对不同吸收峰纳米金锥的选择性激发。纳米金锥将有可能用于多光谱光声成像,实现对不同靶标的目标分子探测。  相似文献   

9.
本实验采用人工胸膜再造及荧光素钠血管内造影的方法观察了大鼠活体肺表面的微循环及其运动反应并同时进行连续摄像录像分析。这种肺微循环的观察方法能清楚地判断肺血流方向,区分肺微动、静脉,而且各级血管显影清晰、边界明确,能准确地测量微血管的真实口径变化及其对刺激的反应与动态改变。血管紧张素Ⅱ收缩管径40μm以上的肺微动脉,去甲肾上腺素既收缩肺微动脉,又收缩微静脉,而血小板激活因子则轻度扩张肺微动脉,急性肺泡缺氧亦可致肺微动脉及微静脉收缩。这些结果提示:肺微血管对循环中的活性物质及肺泡缺氧有明显的反应,这种反应可能在通气/血流比值调节方面起重要作用。该实验模型可用于肺微循环的调节及某些药物和致病因素作用的研究。  相似文献   

10.
目的:利用生物自发光的裸鼠肝癌原位移植模型,以活体荧光成像技术对肝癌的生长和转移情况进行动态、量化分析.方法:将稳定转染了荧光素酶(luciferase)基因的人肝癌细胞株MHCC97-H-LUC细胞,移植至裸鼠肝脏包膜下,每周利用活体荧光成像系统对裸鼠体内移植瘤的生长部位和范围进行成像,测量肿瘤细胞生物发光量,动态观察肝癌细胞在裸鼠体内的肿瘤数量、生长速度和转移情况.结果:建立可稳定表达荧光素酶的人肝癌细胞株MHCC97-H-LUC并用于进行生物自发光的裸鼠原位移植模型;利用活体荧光成像系统对裸鼠体内的移植瘤成像,见发光部位由肝脏向腹腔扩散,发光量随时间呈指数级增长;病理学观察证实肿瘤细胞长.结论:利用活体荧光成像技术的动态量化分析可灵敏、准确地监测裸鼠肝癌原位移植模型中肿瘤细胞的生长及转移情况,为肿瘤发生、生长、转移机制及对抗肿瘤生长和转移的体内研究提供了科学的量化手段.  相似文献   

11.
Vessel lengths are important to plant hydraulic studies, but are not often reported because of the time required to obtain measurements. This paper compares the fast dynamic method (air injection method) with the slower but traditional static method (rubber injection method). Our hypothesis was that the dynamic method should yield a larger mean vessel length than the static method. Vessel length was measured by both methods in current year stems of Acer, Populus, Vitis and Quercus representing short‐ to long‐vessel species. The hypothesis was verified. The reason for the consistently larger values of vessel length is because the dynamic method measures air flow rates in cut open vessels. The Hagen–Poiseuille law predicts that the air flow rate should depend on the product of number of cut open vessels times the fourth power of vessel diameter. An argument is advanced that the dynamic method is more appropriate because it measures the length of the vessels that contribute most to hydraulic flow. If all vessels had the same vessel length distribution regardless of diameter, then both methods should yield the same average length. This supports the hypothesis that large‐diameter vessels might be longer than short‐diameter vessels in most species.  相似文献   

12.
Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state (4 I 13/2) to the ground state (4 I 15/2) of Er3+ at 1.53 μm, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er3+ ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er3+ emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5Ǻ from the Er3+ ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.  相似文献   

13.
A recent article of Zavrel et al. in this journal (Eng. Life Sci. 2010, 10, 191–200) described a comparison of several computer programs for progress‐curve analysis with respect to different computational approaches for parameter estimation. The authors applied both algebraic and dynamic parameter estimations, although they omitted time‐course analysis through the integrated rate equation. Recently, it was demonstrated that progress‐curve analysis through the integrated rate equation can be considered a simple and useful alternative for enzymes that obey the generalized Michaelis–Menten reaction mechanism. To complete this gap, the time‐dependent solution of the generalized Michaelis–Menten equation is here fitted to the progress curves from the Zavrel et al. reference article. This alternative rate‐integration approach for determining the kinetics parameters of Michaelis–Menten‐type enzymes yields the values with the greatest accuracy, as compared with the results obtained by other (algebraic or dynamic) parameter estimations.  相似文献   

14.
The highly structured organization of tubules and blood vessels in the outer medulla of the mammalian kidney is believed to result in preferential interactions among tubules and vessels; such interactions may promote solute cycling and enhance urine concentrating capability. In this study, we formulate a new model framework for the urine concentrating mechanism in the outer medulla of the rat kidney. The model simulates preferential interactions among tubules and vessels by representing two concentric regions and by specifying the fractions of tubules and vessels assigned to each of the regions. The model equations are based on standard expressions for transmural transport and on solute and water conservation. Model equations, which are derived in dynamic form, are solved to obtain steady-state solutions by means of a stable and efficient numerical method, based on the semi-Lagrangian semi-implicit method and on Newton’s method. In this application, the computational cost scales as O(N 2), where N is the number of spatial subintervals along the medulla. We present representative solutions and show that the method generates approximations that are second-order accurate in space and that exhibit mass conservation.  相似文献   

15.
Magnetic fields (MF) can alter the dynamic behavior of vascular tissue and may have a stimulatory or inhibitory effect on blood vessel growth. Fractal geometry has been used in several studies as a tool to describe the development of blood vascular networks. Due to its self‐similarity, irregularity, fractional dimension, and dependence on the scale of vessel dimensions, vascular networks can be taken as fractal objects. In this work, we calculated the fractal dimension by the methods of box counting (Dbc) and information dimension (Dinf) to evaluate the development of blood vessels of the yolk sac membrane (YSM) from quail embryos exposed to MF with a magnetic flux density of 1 mT and a frequency of 60 Hz. The obtained results showed that when the MF was applied to embryos aged between 48 and 72 h, in sessions of 2 h (6 h/day) and 3 h (9 h/day) with exposure intervals between 6 and 5 h, respectively, blood vascular formation was inhibited. Exposure sessions shorter than 2 h or longer than 3 h had no observable change on the vascular process. In contrast, the magnetic field had no observable change on the YSM vascular network for embryos aged between 72 and 96 h, irrespective of the exposure time. In conclusion, these results show a “window effect” regarding exposure time. Bioelectromagnetics 34:114–121, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.

Background  

The problem of computationally predicting the secondary structure (or folding) of RNA molecules was first introduced more than thirty years ago and yet continues to be an area of active research and development. The basic RNA-folding problem of finding a maximum cardinality, non-crossing, matching of complimentary nucleotides in an RNA sequence of length n, has an O(n 3)-time dynamic programming solution that is widely applied. It is known that an o(n 3) worst-case time solution is possible, but the published and suggested methods are complex and have not been established to be practical. Significant practical improvements to the original dynamic programming method have been introduced, but they retain the O(n 3) worst-case time bound when n is the only problem-parameter used in the bound. Surprisingly, the most widely-used, general technique to achieve a worst-case (and often practical) speed up of dynamic programming, the Four-Russians technique, has not been previously applied to the RNA-folding problem. This is perhaps due to technical issues in adapting the technique to RNA-folding.  相似文献   

17.
Some current promoter libraries have been developed for synthetic gene networks. But an efficient method to engineer a synthetic gene network with some desired behaviors by selecting adequate promoters from these promoter libraries has not been presented. Thus developing a systematic method to efficiently employ promoter libraries to improve the engineering of synthetic gene networks with desired behaviors is appealing for synthetic biologists.In this study, a synthetic gene network with intrinsic parameter fluctuations and environmental disturbances in vivo is modeled by a nonlinear stochastic system. In order to engineer a synthetic gene network with a desired behavior despite intrinsic parameter fluctuations and environmental disturbances in vivo, a multiobjective H2/H reference tracking (H2 optimal tracking and H noise filtering) design is introduced. The H2 optimal tracking can make the tracking errors between the behaviors of a synthetic gene network and the desired behaviors as small as possible from the minimum mean square error point of view, and the H noise filtering can attenuate all possible noises, from the worst-case noise effect point of view, to achieve a desired noise filtering ability. If the multiobjective H2/H reference tracking design is satisfied, the synthetic gene network can robustly and optimally track the desired behaviors, simultaneously.First, based on the dynamic gene regulation, the existing promoter libraries are redefined by their promoter activities so that they can be efficiently selected in the design procedure. Then a systematic method is developed to select an adequate promoter set from the redefined promoter libraries to synthesize a gene network satisfying these two design objectives. But the multiobjective H2/H reference tracking design problem needs to solve a difficult Hamilton–Jacobi Inequality (HJI)-constrained optimization problem. Therefore, the fuzzy approximation method is employed to simplify the HJI-constrained optimization problem to an equivalent linear matrix inequality (LMI)-constrained optimization problem, which can be easily solved by selecting an adequate promoter set from the redefined promoter libraries using the LMI toolbox in Matlab.Based on the confirmation of in silico design examples, we can select an adequate promoter set from the redefined promoter libraries to achieve the multiobjective H2/H reference tracking design. The proposed method can reduce the number of trial-and-error experiments in selecting an adequate promoter set for a synthetic gene network with desired behaviors. With the rapid increase of promoter libraries, this systematic method will accelerate progress of synthetic biology design.  相似文献   

18.
Both the clinical diagnosis and fundamental investigation of major ocular diseases greatly benefit from various non-invasive ophthalmic imaging technologies. Existing retinal imaging modalities, such as fundus photography1, confocal scanning laser ophthalmoscopy (cSLO)2, and optical coherence tomography (OCT)3, have significant contributions in monitoring disease onsets and progressions, and developing new therapeutic strategies. However, they predominantly rely on the back-reflected photons from the retina. As a consequence, the optical absorption properties of the retina, which are usually strongly associated with retinal pathophysiology status, are inaccessible by the traditional imaging technologies.Photoacoustic ophthalmoscopy (PAOM) is an emerging retinal imaging modality that permits the detection of the optical absorption contrasts in the eye with a high sensitivity4-7 . In PAOM nanosecond laser pulses are delivered through the pupil and scanned across the posterior eye to induce photoacoustic (PA) signals, which are detected by an unfocused ultrasonic transducer attached to the eyelid. Because of the strong optical absorption of hemoglobin and melanin, PAOM is capable of non-invasively imaging the retinal and choroidal vasculatures, and the retinal pigment epithelium (RPE) melanin at high contrasts 6,7. More importantly, based on the well-developed spectroscopic photoacoustic imaging5,8 , PAOM has the potential to map the hemoglobin oxygen saturation in retinal vessels, which can be critical in studying the physiology and pathology of several blinding diseases 9 such as diabetic retinopathy and neovascular age-related macular degeneration.Moreover, being the only existing optical-absorption-based ophthalmic imaging modality, PAOM can be integrated with well-established clinical ophthalmic imaging techniques to achieve more comprehensive anatomic and functional evaluations of the eye based on multiple optical contrasts6,10 . In this work, we integrate PAOM and spectral-domain OCT (SD-OCT) for simultaneously in vivo retinal imaging of rat, where both optical absorption and scattering properties of the retina are revealed. The system configuration, system alignment and imaging acquisition are presented.  相似文献   

19.
Niosomes have been claimed to enhance intestinal absorption and to widen the absorption window of acidic drugs. This was reported after monitoring the intestinal absorption in situ. Accordingly, the aim of this work was to investigate the effect of niosomal encapsulation on intestinal absorption and oral bioavailability of nateglinide. This was conducted with the goal of correlation between in situ intestinal absorption and in vivo availability. The drug was encapsulated into proniosomes. The niosomes resulting after hydration of proniosomes were characterized with respect to vesicle size and drug entrapment efficiency. The in situ rabbit intestinal absorption of nateglinide was monitored from its aqueous solution and niosomes. Streptozotocin was used to induce diabetes in albino rats which were then used to assess the hypoglycemic effect of nateglinide after oral administration of aqueous dispersion and niosomal systems. The prepared vesicles were in the nanoscale with the recorded size being 283?nm. The entrapment efficiency depended on the pH of the formulation. The in situ intestinal absorption reflected non-significant alteration in the membrane transport parameters of the drug after niosomal encapsulation compared with the free drug solution. In contrast, niosomes showed significant improvement in the rate and extent of the hypoglycemic effect compared with the unprocessed drug. This discrepancy can be attributed to different transport pathway for the drug after niosomal inclusion with the vesicles undergoing translymphatic transport which can minimize presystemic metabolism. However, this requires confirmatory investigations. In conclusion niosomes can enhance oral bioavailability of nateglinide with the absorption being through nontraditional pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号