首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammatory mediators such as TNF-alpha, IL-6, and IL-1 are important in the pathogenesis of inflammatory bowel diseases and are regulated by the activation of NF-kappaB. The aim of the present study was to investigate whether the NF-kappaB essential modulator (NEMO)-binding domain (NBD) peptide, which has been shown to block the association of NEMO with the IkappaB kinasebeta subunit (IKKbeta) and inhibit NF-kappaB activity, reduces inflammatory injury in mice with colitis. Two colitis models were established by the following: 1) inclusion of dextran sulfate sodium salt (DSS) in the drinking water of the mice; and 2) a trinitrobenzene sulfonic acid enema. Marked NF-kappaB activation and expression of proinflammatory cytokines were observed in colonic tissues. The NBD peptide ameliorated colonic inflammatory injury through the down-regulation of proinflammatory cytokines mediated by NF-kappaB inhibition in both models. These results indicate that an IKKbeta-targeted NF-kappaB blockade using the NBD peptide could be an attractive therapeutic approach for inflammatory bowel disease.  相似文献   

2.
Viral infection is associated with a vigorous inflammatory response characterized by cellular infiltration and release of the proinflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). In the present study, we identified a novel function of human cytomegalovirus (HCMV) that results in inhibition of IL-1 and TNF-alpha signaling pathways. The effect on these pathways was limited to cells infected with the virus, occurred at late times of infection, and was independent of cell type or virus strain. IL-1 and TNF-alpha signaling pathways converge at a point upstream of NF-kappaB activation and involve phosphorylation and degradation of the NF-kappaB inhibitory molecule IkappaBalpha. The HCMV inhibition of IL-1 and TNF-alpha pathways corresponded to a suppression of NF-kappaB activation. Analysis of IkappaBalpha phosphorylation and degradation suggested that HCMV induced two independent blocks in NF-kappaB activation, which occurred upstream from the point of convergence of the IL-1 and TNF-alpha pathways. We believe that the ability of HCMV to inhibit these two major proinflammatory pathways reveals a critical aspect of HCMV biology, with possible importance for immune evasion, as well as establishment of infection in cell types persistently infected by this virus.  相似文献   

3.
4.
Acetyl-11-keto-beta-boswellic acid (AKBA), a component of an Ayurvedic therapeutic plant Boswellia serrata, is a pentacyclic terpenoid active against a large number of inflammatory diseases, including cancer, arthritis, chronic colitis, ulcerative colitis, Crohn's disease, and bronchial asthma, but the mechanism is poorly understood. We found that AKBA potentiated the apoptosis induced by TNF and chemotherapeutic agents, suppressed TNF-induced invasion, and inhibited receptor activator of NF-kappaB ligand-induced osteoclastogenesis, all of which are known to require NF-kappaB activation. These observations corresponded with the down-regulation of the expression of NF-kappaB-regulated antiapoptotic, proliferative, and angiogenic gene products. As examined by DNA binding, AKBA suppressed both inducible and constitutive NF-kappaB activation in tumor cells. It also abrogated NF-kappaB activation induced by TNF, IL-1beta, okadaic acid, doxorubicin, LPS, H2O2, PMA, and cigarette smoke. AKBA did not directly affect the binding of NF-kappaB to the DNA but inhibited sequentially the TNF-induced activation of IkappaBalpha kinase (IKK), IkappaBalpha phosphorylation, IkappaBalpha ubiquitination, IkappaBalpha degradation, p65 phosphorylation, and p65 nuclear translocation. AKBA also did not directly modulate IKK activity but suppressed the activation of IKK through inhibition of Akt. Furthermore, AKBA inhibited the NF-kappaB-dependent reporter gene expression activated by TNFR type 1, TNFR-associated death domain protein, TNFR-associated factor 2, NF-kappaB-inducing kinase, and IKK, but not that activated by the p65 subunit of NF-kappaB. Overall, our results indicated that AKBA enhances apoptosis induced by cytokines and chemotherapeutic agents, inhibits invasion, and suppresses osteoclastogenesis through inhibition of NF-kappaB-regulated gene expression.  相似文献   

5.
6.
7.
8.
Renal ischemia/reperfusion (I/R) injury is a major cause of kidney damage. There is accumulating evidence that inflammatory reactions are involved in the pathogenesis of this process. Our studies demonstrate that transgenic mice overexpressing human extracellular and intracellular glutathione peroxidases (GP) are protected against kidney I/R injury. Importantly, significant reduction in neutrophil migration was observed in GP mice compared with nontransgenic mice. Analysis of signaling molecules mediating neutrophil activation and recruitment indicates reduction in the level of KC and macrophage inflammatory protein-2 chemokine expression in transgenic animals. The molecular mechanism mediating this effect appears to involve repression of NF-kappaB activation at the level of IkappaBalpha and IkappaBbeta degradation. In the case of IkappaBalpha, no apparent phosphorylation was detected. These results suggest that IkappaBalpha proteolysis is triggered during the renal I/R pro-oxidant state by a still unknown mechanism, which might be different from other stimuli. A central role of NF-kappaB in CXC chemokine activation was demonstrated in cell culture anoxia/ATP repletion experiments as a model of I/R. The data presented indicate the important role of GP-sensitive signal transduction pathways in the development of inflammatory response and tissue injury during I/R.  相似文献   

9.
10.
11.
12.
13.
14.
Hepatic ischemia-reperfusion (I/R) injury continues to be a fatal complication after liver surgery. Heat shock (HS) preconditioning is an effective strategy for protecting the liver from I/R injury, but its exact mechanism is still unclear. Because the activation of nuclear factor-kappaB (NF-kappaB) is an important event in the hepatic I/R-induced inflammatory response, the effect of HS preconditioning on the pathway for NF-kappaB activation was investigated. In the control group, NF-kappaB was activated 60 min after reperfusion, but this activation was suppressed in the HS group. Messenger RNA expressions of proinflammatory mediators during reperfusion were also reduced with HS preconditioning. Concomitant with NF-kappaB activation, NF-kappaB inhibitor I-kappaB proteins were degraded in the control group, but this degradation was suppressed in the HS group. This study shows that HS preconditioning protected the liver from I/R injury by suppressing the activation of NF-kappaB and the subsequent expression of proinflammatory mediators through the stabilization of I-kappaB proteins.  相似文献   

15.
AMP-activated protein kinase (AMPK) is activated by increases in the intracellular AMP-to-ATP ratio and plays a central role in cellular responses to metabolic stress. Although activation of AMPK has been shown to have anti-inflammatory effects, there is little information concerning the role that AMPK may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of pharmacological activators of AMPK, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) and barberine, on Toll-like receptor 4 (TLR4)-induced neutrophil activation. AICAR and barberine dose-dependently activated AMPK in murine bone marrow neutrophils. Exposure of LPS-stimulated neutrophils to AICAR or barberine inhibited release of TNF-alpha and IL-6, as well as degradation of IkappaBalpha and nuclear translocation of NF-kappaB, compared with findings in neutrophil cultures that contained LPS without AICAR or barberine. Administration of AICAR to mice resulted in activation of AMPK in the lungs and was associated with decreased severity of LPS-induced lung injury, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-alpha and IL-6 in bronchoalveolar lavage fluid. These results suggest that AMPK activation reduces TLR4-induced neutrophil activation and diminishes the severity of neutrophil-driven proinflammatory processes, including acute lung injury.  相似文献   

16.
Endogenous regulation of the acute inflammatory response   总被引:2,自引:0,他引:2  
The acute inflammatory response has been triggered in rat lungs by deposition of IgG immune complexes. The inflammatory reaction triggered is highly tissue damaging and requires activation of NF-kappaB with ensuing generation of chemokines and cytokines. Endogenous generation of IL- 10 and IL- 13 as well as secretory leukocyte protease inhibitor (SLPI), significantly regulates this inflammatory response. IL-10 and IL-13 attenuate NF-kappaB activation by interfering with breakdown of IkappaBalpha, while SLPI likewise suppresses NF-kappaB activation, but by interfering with breakdown of IkappaBbeta. Antibody induced blockade of IL-10, IL-13 or SLPI enhances NF-KB activation in lung and exacerbates the lung inflammatory response and injury. These data indicate that endogenous IL-10, IL-13 and SLPI are important regulators of the inflammatory response by reducing gene activation with resultant generation of peptide mediators/cytokines and chemokines.  相似文献   

17.
Activation of the stress response attenuates proinflammatory responses by suppressing cytokine-stimulated activation of the NF-kappaB signaling pathway. In this study, we show that the activation of the cellular stress response, either by heat shock treatment or after exposure to sodium arsenite, leads to a transient inhibition of IkappaBalpha phosphorylation. Inhibition of IkappaBalpha phosphorylation after stress was associated with the detergent insolubilization of the upstream kinases, IkappaB kinase alpha (IKKalpha) and IkappaB kinase beta, components involved in IkappaBalpha phosphorylation. Pretreatment of cells with glycerol, a chemical chaperone that reduces the extent of stress-induced protein denaturation, reduced the stress-dependent detergent insolubility of the IKK complex and restored the cytokine-stimulated phosphorylation of IkappaB. The stress-dependent insolubility of the IKK complex appeared reversible; as the cells recovered from the heat shock treatment, the IKK complex reappeared within the soluble fraction of cells and was again capable of mediating the phosphorylation of IkappaBalpha in response to added cytokines. Treatment of cells with geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) function, also resulted in IKK detergent insolubility and proteasome-mediated degradation of the IKK complex. Furthermore, while IKKalpha coprecipitated with Hsp90 in control cells, coprecipitation of the two proteins was greatly reduced in those cells early after stress or following exposure to geldanamycin. Stress-induced transient insolubilization of the IkappaB kinase complex following its dissociation from Hsp90 represents a novel mechanism by which the activation of the stress response inhibits the NF-kappaB signaling pathway in response to proinflammatory stimuli.  相似文献   

18.
Type 1 diabetes is characterized by a chronic inflammatory response resulting in the selective destruction of the insulin-producing beta cells. We have previously demonstrated that dendritic cells (DCs) prepared from nonobese diabetic (NOD) mice, a model for spontaneous type 1 diabetes, exhibit hyperactivation of NF-kappaB resulting in an increased capacity to secrete proinflammatory cytokines and stimulate T cells compared with DCs of nondiabetic strains of mice. In the current study, the activational status of NF-kappaB and its role in regulating the APC function of macrophages (Mphi) prepared from NOD, nonobese resistant (NOR), and BALB/c mice was investigated. Independent of the stimulus, splenic and bone marrow-derived Mphi prepared from NOD mice exhibited increased NF-kappaB activation relative to NOR and BALB/c Mphi. This hyperactivation was detected for different NF-kappaB complexes and correlated with increased IkappaBalpha degradation. Furthermore, increased NF-kappaB activation resulted in an enhanced capacity of NOD vs NOR or BALB/c Mphi to secrete IL-12(p70), TNF-alpha, and IL-1alpha, which was inhibited upon infection with an adenoviral recombinant encoding a modified form of IkappaBalpha. In contrast, elevated NF-kappaB activation had no significant effect on the capacity of NOD Mphi to stimulate CD4(+) or CD8(+) T cells in an Ag-specific manner. These results demonstrate that in addition to NOD DCs, NOD Mphi exhibit hyperactivation of NF-kappaB, which correlates with an increased ability to mediate a proinflammatory response. Furthermore, NF-kappaB influences Mphi APC function by regulating cytokine secretion but not T cell stimulation.  相似文献   

19.
Park KG  Lee KM  Chang YC  Magae J  Ando K  Kim KB  Kim YN  Kim HS  Park JY  Lee KU  Lee IK 《Life sciences》2006,80(2):120-126
Vascular inflammation induced by the proinflammatory cytokine/NF-kappaB pathway is one of the key mechanisms in the development of atherosclerosis. Peroxisome proliferators-activated receptor-gamma (PPARgamma) plays an important role in the prevention of arterial inflammation and formation of atherogenesis. Herein we examine the effects of a newly identified synthetic PPARgamma ligand, ascochlorin-6 (AS-6), on TNF-alpha-stimulated NF-kappaB activity and inflammatory molecule expression in vascular smooth muscle cells (VSMCs). AS-6 successfully inhibited TNF-alpha-stimulated NF-kappaB activity and inflammatory molecule expression, including vascular cell adhesion molecule-1 (VCAM-1), monocyte chemotactic protein-1 (MCP-1), and fractalkine (CX3CL1). Transient transfection with an [NF-kappaB]x4 luciferase reporter construct showed that AS-6 inhibition of TNF-alpha-stimulated NF-kappaB activation was PPARgamma-dependent. The effects of AS-6 on TNF-alpha-stimulated VCAM-1 and CX3CL1 expression were abolished in cells transfected with an adenovirus expressing dominant-negative PPARgamma and in cells treated with a PPARgamma specific inhibitor, GW9662, confirming again that the anti-inflammatory effect of AS-6 was PPARgamma-dependent. The inhibitory effects of AS-6 on TNF-alpha-stimulated inflammatory gene expression and NF-kappaB activation were more potent than those of rosiglitazone and pioglitazone. This study shows that AS-6 reduces the inflammatory response to TNF-alpha in VSMCs. The data suggest the possibility that AS-6 can be used to prevent the development and progression of atherosclerosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号