首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The mode and organization of the attachment site of Cryptosporidium muris to gastric glands of stomach were investigated by the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane, of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with host plasma membrane, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was severely altered at the above two junctures. The parasitophorous outer membrane showed low IMP-density when compared to the host plasma membrane, although both membranes were continuous at the dense band. The inner membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP, although both membranes were continuous at the annular ring. The size of dense band and annular ring was similar in diameter. The feeder organelle was clearly visible as membrane folds in freeze-fracture and some of them were connected with small vesicles of cytoplasm, indicating that the feeder organelle may play an important role for incorporation of nutrients from the host cell.  相似文献   

2.
The attachment site of Cryptosporidium muris to host cells was investigated using the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with the host plasma membrane at the dense band, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was dramatically altered at the above two junctures. The outer parasitophorous membrane showed low IMP-density as compared to the host plasma membrane, although both membranes were continuous. The inner parasitophorous membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP. When the attachment sites of parasites and host cells were fractured, circular-shaped fractured faces were observed on both sites of the parasite and host cell. These exposed faces corresponded to the dense bands and were very similar in size in each parasite.  相似文献   

3.
ABSTRACT. Distribution of membrane cholesterol at the attachment site of Cryptosporidium muris was investigated by freeze-fracture cytochemistry using a polyene antibiotic filipin. Since the host plasma membrane enveloped C. muris , the inner and outer membranes were continuous with the parasite plasma membrane at the annular ring and with host membrane at the dense band, respectively. Although many filipin-cholesterol complexes were observed on the plasma membrane of host cells and parasites, a line showing no complexes was evident at the above two membrane junctures. These observations indicate that parasitic infection of C. muris altered the organization of membrane cholesterol.  相似文献   

4.
Early developmental stages of Gregarina steini Berndt, 1902 from the intestine of Tenebrio molitor larvae were studied by transmission electron microscopy. The formation and structure of the eugregarine attachment site were compared with comparable features found on the feeder organelle of Cryptosporidium muris Tyzzer, 1907, from the stomach of experimentally infected rodents. The similarity of the attachment strategy between both organisms was revealed. The membrane fusion site in G. steini, formed by the trophozoite plasma membrane, host cell plasma membrane and a membrane-like structure limiting the cortical zone of the epimerite, resembles the Y-shaped membrane junction between the host cell plasma membrane, the trophozoite plasma membrane and membrane surrounding the anterior vacuole in C. muris. The anterior vacuole of C. muris appears to be the precursor of the feeder organelle and its structure is very similar to the epimeritic bud and the cortical zone of G. steini trophozoites. In both investigated organisms, the apical complex disappears early during cell invasion. The possibility of the epicellular location of Cryptosporidium on the surface of host cells is discussed.  相似文献   

5.
Cryptosporidium parvum mainly invades the intestinal epithelium and causes watery diarrhea in humans and calves. However, the invasion process has not yet been clarified. In the present study, the invasion process of C. parvum in severe combined immunodeficiency (SCID) mice was examined. Infected mice were necropsied; the ilea were double-fixed routinely and observed by scanning and transmission electron microscopy. In addition, the microvillus membrane was observed by ruthenium red staining. Scanning electron micrographs showed elongation of the microvilli at the periphery of the parasite. The microvilli were shown to be along the surface of the parasite in higher magnification. Transmission electron microscopy confirmed that the invading parasites were located among microvilli. Parasites existed in the parasitophorous vacuole formed by the microvillus membrane. The parasite pellicle attached to the host cell membrane at the bottom of the parasite, and then the pellicle and host cell membrane became unclear. Subsequently, the pellicle became complicated and formed a feeder organelle. In addition, invasion of the parasite was not observed in either a microvillus or the cytoplasm of the host cell. Therefore, C. parvum invades among microvilli, is covered with membranes derived from numerous microvilli, and develops within the host cell.  相似文献   

6.
The structure of both the host and parasite membranes during stages in the asexual development of Plasmodium chabaudi in mouse red blood cells is examined by transmission electron microscopy of thin sections and freeze-fracture preparations. The erythrocyte's plasma membrane, the membrane of the parasitophorous vacuole, and the plasma membrane of the parasite exhibit different structural properties in terms of membrane width and the frequency and diameter of the typical intramembrane-particles (IMP) populating the membrane's fracture faces. The difference between the parasitophorous vacuolar membrane and host cell's plasma membrane is remarkable because the vacuolar membrane is formed from an invagination of the erythrocyte's plasma membrane. The vacuolar membrane has significantly reduced frequencies and diameters of IMP's on both faces and reveals a marked temperature response manifesting itself as large IMP-devoid domains emerging on both faces on chilling to 4°C. In contrast, cooling induces only some very small IMP-devoid patches on both faces of the host plasma membrane. Neither of these membranes changes significantly as parasite development progresses. In contrast, the parasite's plasma membrane shows local alterations during its development, forming compaction domains with the nuclear envelope in ca. 30% of the ring-stages and trophozoites. These compaction domains disappear in late uninuclear trophozoites and schizonts. Furthermore, the plasma membrane of the host cell, the vacuolar membrane, and the parasite's plasma membrane do not respond to externally applied Ca2+, and their temperature-response remains unaltered during the infection cycle. Thus, modification of these three membranes as a consequence of invasion and development of the parasites, as recently found in the primate malaria caused by P. knowlesi, can be detected neither directly nor indirectly via temperature- and/or Ca2+-response in the rodent malaria caused by P. chabaudi.  相似文献   

7.
贝氏隐孢子虫在北京鸭体内发育的超微结构研究   总被引:11,自引:1,他引:10  
贝氏隐孢子虫各期虫体均位于宿主粘膜上皮细胞的带虫空泡中。在虫体与上皮细胞接触处,虫体表膜反复折迭形成营养器。子孢子或裂殖子与粘膜上皮细胞接触后,逐步过渡为球形的滋养体;滋养体经2—3次核分裂、产生含4或8个裂殖子的两代裂殖体,裂殖体以外出芽方式产生裂殖子;裂殖子无微孔,顶端表皮形成3—4个环嵴,裂殖子进一步发育成为配子体;大配子体含有两种类型的成囊体。小配子呈楔形,无鞭毛和顶体,有一个致密的长椭圆形细胞核,小配子表膜内侧有9根膜下微管;孢子化卵囊内含四个裸露的子孢子和一个大残体。本文是有关鸭体内隐孢子虫超微结构的首次报导。  相似文献   

8.
The ultrastructure of two gastric cryptosporidia, Cryptosporidium muris from experimentally infected rodents (Mastomys natalensis) and Cryptosporidium sp. 'toad' from naturally infected toads (Duttaphrynus melanostictus), was studied using electron microscopy. Observations presented herein allowed us to map ultrastructural aspects of the cryptosporidian invasion process and the origin of a parasitophorous sac. Invading parasites attach to the host cell, followed by gradual envelopment, with the host's cell membrane folds, eventually forming the parasitophorous sac. Cryptosporidian developmental stages remain epicellular during the entire life cycle. The parasite development is illustrated in detail using high resolution field emission scanning electron microscopy. This provides a new insight into the ultrastructural detail of host-parasite interactions and species-specific differences manifested in frequency of detachment of the parasitophorous sac, radial folds of the parasitophorous sac and stem-formation of the parasitised host cell.  相似文献   

9.
Plasmodium cynomolgi, Plasmodium knowlesi, and Plasmodium berghei sporozoites, before and after incubation with immune serum, were studied after freeze-fracture by electron microscopy. There were evenly distributed numerous intramembranous particles (IMP) on the P face of the outer membrane. The E face of the plasma membrane had fewer IMP than its P face. The E face of the intermediate membrane had few IMP and also linear arrays of slightly raised ridges running the length of the parasite. The P face of the intermediate membrane had many IMP aligned along the long axis of the sporozoite. On the P face of the inner membrane, IMP were arranged in very distinct rows conforming to the long axis of the parasite; the E face of this membrane had a few randomly distributed IMP. A prominent change in the sporozoite incubated in immune serum was the appearance of a layer of aggregated particles around the parasite. The P face of the plasma membrane had several clear areas devoid of IMP and IMP aggregates. No changes were seen in the other fractured faces of the pellicle. These observations suggest that immune serum acts only on the P face of the plasma membrane.  相似文献   

10.
Plasmodium cynomolgi, Plasmodium knowlesi, and Plasmodium berghei sporozoites, before and after incubation with immune serum, were studied after freeze-fracture by electron microscopy. There were evenly distributed numerous intramembranous particles (IMP) on the P face of the outer membrane. The E face of the plasma membrane had fewer IMP than its P face. The E face of the intermediate membrane had few IMP and also linear arrays of slightly raised ridges running the length of the parasite. The P face of the intermediate membrane had many IMP aligned along the long axis of the sporozoite. On the P face of the inner membrane. IMP were arranged in very distinct rows conforming to the long axis of the parasite; the E face of this membrane had a few randomly distributed IMP. A prominent change in the sporozoite incubated in immune serum was the appearance of a layer of aggregated particles around the parasite. The P face of the plasma membrane had several clear areas devoid of IMP and IMP aggregates. No changes were seen in the other fractured faces of the pellicle. These observations suggest that immune serum acts only on the P face of the plasma membrane.  相似文献   

11.
The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.  相似文献   

12.
Human neutrophils and eosinophils adhere to the surface of schistosomula of Schistosoma mansoni that have been preincubated with antischistosomular sera with or without complement. Neutrophils are seen to form small (< 0.5 micrometer), heptalaminar and large (5-8 micrometer), pentalaminar fusions with the normal pentalaminar parasite surface membrane. By freeze-fracture techniques, attachment areas 5-8 micrometer in diameter are seen to form between neutrophils and schistosomula. These areas have three zones--an edge and two centrally located areas, one of which is rich and one of which is poor in intramembrane particles (IMPs). The edge zone is continuous around the attachment areas and is usually composed of a skip-fracture that passes out of the schistosomular outer membrane into the inner membrane. In some cases, the edge zone is made up of a string of IMPs. The IMP-rich central areas have an IMP concentration similar to that of unattached neutrophil membranes, are raised off of the surface of the schistosomulum, and have two normal schistosomular membranes underneath indicating that they are indeed unattached. the IMP-poor central areas are composed of a fused or hybrid membrane that is continuous with the neutrophil plasma membrane but that bears the same spatial relationship to the schistosomular inner membrane that the normal outer membrane does. Similar changes are seen in samples prepared with glycerination. Eosinophils generally do not fuse with the schistosomular outer membrane but, instead, discharge their granular contents onto the surface of the schistosomula and appear to adhere to the parasite through this discharged material. It is suggested that schistosomula have a capability to fuse with mammalian cells and that this fusion proceeds from a fusion of the outer leaflets to a fusion of the bilayers, as appears also to be the case in other systems.  相似文献   

13.
Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host‐derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole–host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative ‘meront’ stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC‐1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno‐EM revealed that the ATP‐delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria‐vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP‐delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite.  相似文献   

14.
To explore the mechanisms by which Cryptosporidium parvum infects epithelial cells, we performed a detailed morphological study by serial electron microscopy to assess attachment to and internalization of biliary epithelial cells by C. parvum in an in vitro model of human biliary cryptosporidiosis. When C. parvum sporozoites initially attach to the host cell membrane, the rhoptry of the sporozoite extends to the attachment site; both micronemes and dense granules are recruited to the apical complex region of the attached parasite. During internalization, numerous vacuoles covered by the parasite's plasma membrane are formed and cluster together to establish a preparasitophorous vacuole. This preparasitophorous vacuole comes in contact with host cell membrane to form a host cell-parasite membrane interface, beneath which an electron-dense band begins to appear within the host cell cytoplasm. Simultaneously, host cells display membrane protrusion along the edge of the host cell-parasite membrane interface, resulting in the formation of a mature parasitophorous vacuole that completely covers the parasite. During internalization, vacuole-like structures appear in the apical complex region of the attached sporozoite, which bud out into host cells. A tunnel directly connecting the parasite to the host cell cytoplasm forms during internalization and remains when the parasite is totally internalized. Immunoelectron microscopy showed that sporozoite-associated proteins were localized along the dense band and at the parasitophorous vacuole membrane. These morphological observations provide evidence that secretion of parasite apical organelles and protrusion of host cell membrane play an important role in the attachment and internalization of host epithelial cells by C. parvum.  相似文献   

15.
To study precursor-product relationships between cytoplasmic membranes of the inner segment of photoreceptors and the continually renewed outer disc membrane, we have compared the density and size distribution of intramembrane particles (IMP) in various membrane compartments of freeze-fractured photoreceptor inner and outer segments. Both rod and cone outer segments of Xenopus laevis are characterized by a relatively uniform distribution of approximately 4,400-4,700 IMP/micron2 in P-face (PF) leaflets of disc membranes. A similar distribution of IMP is found in the outer segment plasma membrane, the ciliary plasma membrane, and in the plasma membrane of the inner segment in the immediate periciliary region. In each case the size distribution of IMP can be characterized as unimodal with a mean diameter of approximately 10 nm. PF leaflets of endoplasmic reticulum, Golgi complex, and vesicles near the cilium have IMP with a size distribution like that in the cilium and outer segment, but with an average density of approximately 2,000/micron2. In contrast, IMP are smaller in average size (approximately 7.5 nm) in PF leaflets of inner segment plasma membrane, exclusive of the periciliary rgion. The similarity of size distribution of IMP in inner segment cytoplasmic membranes and those within the plasmalemma of the cilium and outer segment suggest a precursor-product relationship between the two systems. The structure of the vesicle-rich periciliary region and the segregation of IMP with different size distributions in this region suggest that components destined for incorporation into the outer segment exist as preformed membrane packages (vesicles) which fuse with the inner segment plasma membrane in the periciliary region. Subsequently, membrane components may be transferred to forming discs of the outer segment via the ciliary plasma membrane.  相似文献   

16.
The fine structure of Plasmodium falciparum treated with cyclic AMP in vitro was studied. Cyclic AMP stimulated the appearance of membranous structures in P. falciparum-infected erythrocytes. Two types of membranous structures originating from the host cell were observed: multilaminate membranous structures and multistranded layer-like membranous structures. The multilaminate structures may play a role in gametocytogenesis and the maturation of the gametocyte. The multilaminate structures were either free in the cytoplasm of infected erythrocytes or present in association with the parasitophorous vacuole membrane surrounding immature gametocytes. These structures may originate from the erythrocyte plasma membrane and the parasitophorous vacuole membrane. Other notable findings in P. falciparum treated with cyclic AMP included the presence of loop-like membrane structures protruding from the plasma membrane of the parasite and termination of some plasma membranes of the parasite in dense granular structures.  相似文献   

17.
Ultrastructural observations on the invasion and early development of merozoites (bradyzoites) of Sarcocystis muris in Madin-Darby canine kidney (MDCK) cells are presented. Invading merozoites cause the host cell plasmalemma to invaginate; they form a membrane junction (moving junction) and move into the host cell where they are enclosed in a primary parasitophorous vacuole (PV). Within 30-45 min after becoming intracellular, merozoites begin to vacate the newly established primary PV and move, forming a new membrane junction, into a secondary PV. Simultaneously with the movement of the parasite, the contents of dense granules in the apical part of the merozoites are shed by exocytosis into the lumen of the developing secondary PV. A lamella of the endoplasmic reticulum of the host cell becomes attached to the PV membrane, forming a PV limited by three host cell membranes.  相似文献   

18.
In two variants of Loma salmonae that have specificity for rainbow trout Oncorhynchus mykiss (OA variant) and specificity to brook trout Salvelinus fontinalis (SV variant), the parasitophorous vacuole forms at the onset of sporogony. In the OA variant the merogonial stage is bound by a single plasma membrane in direct contact with host cytoplasm. The parasitophorous vacuole formation is initiated by the host cell surrounding the merogonial stages with endoplasmic reticulum (ER) as occurs in autophagy. Of the two host ER membranes surrounding the parasite, one remains in close association with the plasma membrane of the meront, while the other forms the limiting membrane of the vacuole. The sporogonial stage is bounded by two closely apposed membranes, giving the appearance of a thick electron dense plasmalemma. The observations from this study support the novel hypothesis that this microsporidian uses the intracellular process of autophagy to aid formation of a parasitophorous vacuole. The morphology of the SV‐variant is consistent with that of the OA‐variant suggesting that it uses the same mechanism for development.  相似文献   

19.
During the maturation of two strains of herpes simplex virus type 1 (VR3 and Patton), intramembrane changes were detected with the freeze-fracture technique in the viral envelope and the infected cell plasma membrane, and these changes were compared with data obtained from thin sections. Regardless of the strain, the inner leaflet of the viral envelope of extracellular virions was characterized by a density of intramembrane particles (IMP) three times larger than the host nuclear and plasma membrane. Addition of IMP, which probably represent virus-coded proteins, was detected in the viral envelope only after budding from the nuclear membrane, whereas it occurred during envelopment of capsids at cytoplasmic vacuoles. Fused membranes also showed one of their fracture faces covered with a high density of IMP similar to that of the mature virion envelope. The internal side of the membrane leaflet bearing these numerous particles was always characterized by the presence of an electron-dense material in thin sections. In addition, the plasma membrane of fibroblasts and Vero cells showed strain-specific changes: patches of closely packed IMP were observed with the VR3 strain, whereas ridges almost devoid of IMP characterized the plasmalemma of cells infected with the Patton strain. These intramembrane changes, however, were not observed as early as herpes membrane antigens. Thus, application of the freeze-fracture technique to herpes simplex virus type 1-infected cells revealed striking structural differences between viral and uninfected cell membranes. These differences are probably related to insertion and clustering of virus-coded proteins in the hydrophobic part of the membrane bilayer.  相似文献   

20.
Merozoites of the parasitic protozoon Sarcocystis muris (Apicomplexa) possess three types of characteristic organelles with electron dense contents named rhoptries, micronemes, and dense granules, which are supposed to be involved in the parasite-host cell interactions during and after invasion. Dense granules were purified from a merozoite homogenate by centrifugation on a sucrose density gradient. It was shown by SDS polyacrylamide gel electrophoresis that they contain a major protein of 21 kDa. Polyclonal antibodies raised against this protein were applied to ultrathin frozen and Lowicryl-K4M-embedded sections of the parasite before and after host cell invasion. Dense granules were distinctly labeled by immunogold before and after invasion. After host cell invasion the parasite is enclosed in a secondary parasitophorous vacuole which contains an electron-dense material. This deposition was heavily labeled by anti 21 kDa antibodies which clearly demonstrated that the dense granule contents is released into the secondary parasitophorous vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号