首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of actin in proteose peptone-elicited murine peritoneal macrophages is examined with fluorescent analog cytochemistry (FAC), immunofluorescence, and electron microscopy (EM). Living adherent macrophages, microinjected with 5- iodoacetamidofluorescence-labeled actin, show a rather uniform distribution of actin with punctuate and linear fluorescence in the thin peripheral areas of the cell. Apparent incorporation of a portion of linear fluorescence in the thin peripheral areas of the cell. Apparent incorporation of a portion of the microinjected actin into the cell’s actin cytoskeleton is also demonstrated when microinjected cells are subsequently examined for fluorescein fluorescence after fixation and extraction. However, a substantial perinuclear pool of actin, observed with FAC, is lost when microinjected cells are prepared for immunofluorescence using standard fixation methods. These results suggest that part of the cellular actin, possibly nonfilamentous or oligomeric, can be extracted during the normal preparative steps for immunofluorescence. When the dynamic distributin of actin structures is examined in living cells, extension of the cell’s periphery is associated with the formation of punctuate structures. The distribution of the most stable, nonextractable actin structures in fixed cells at different stages of spreading is quantified using rhodamine-labeled phalloidin and antiactin indirect immunofluorescence. At early stages, the rounded cells show cortical bands of fluorescence surrounding the nuclear region with punctuate structures directly above the plane of the attached plasma membrane. At later time periods, fully spread cells contain both punctuate and linear fluorescent structures. Adherent macrophage membranes, a preparation in which the attached membrane and membrane-cortex are isolated by shearing away the unattached plasma membrane and underlying cytoplasm, show punctuate and linear fluorescence when stained with rhodamine-labeled phalloidin. When the same cell remnant is negatively stained and examined with EM, the fluorescent punctuate structures coincide with electron-dense foci and associated radiating thin filaments. We suggest that the optimal approach for elucidating the distribution of cytoskeletal and contractile proteins involved in motile processes is a combined approach using all three techniques. Although each technique is subject to potential artifacts and limitations, the use of FAC can permit the visualization of both the soluble and stabilized components of the cytoskeleton in living, functional cells. A qualitative method for determining differences in local concentrations of proteins is also presented.  相似文献   

2.
Plasma membrane ghosts form when plant protoplasts attached to a substrate are lysed to leave a small patch of plasma membrane. We have identified several factors, including the use of a mildly acidic actin stabilization buffer and the inclusion of glutaraldehyde in the fixative, that allow immunofluorescent visualization of extensive cortical actin arrays retained on membrane ghosts made from tobacco (Nicotiana tabacum L.) suspension-cultured cells (line Bright Yellow 2). Normal microtubule arrays were also retained using these conditions. Membrane-associated actin is random; it exhibits only limited coalignment with the microtubules, and microtubule depolymerization in whole cells before wall digestion and ghost formation has little effect on actin retention. Actin and microtubules also exhibit different sensitivities to the pH and K+ and Ca2+ concentrations of the lysis buffer. There is, however, strong evidence for interactions between actin and the microtubules at or near the plasma membrane, because both ghosts and protoplasts prepared from taxol-pretreated cells have microtubules arranged in parallel arrays and an increased amount of actin coaligned with the microtubules. These experiments suggest that the organization of the cortical actin arrays may be dependent on the localization and organization of the microtubules.  相似文献   

3.
Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.  相似文献   

4.
The distribution of actin and tubulin during the cell cycle of the budding yeast Saccharomyces was mapped by immunofluorescence using fixed cells from which the walls had been removed by digestion. The intranuclear mitotic spindle was shown clearly by staining with a monoclonal antitubulin; the presence of extensive bundles of cytoplasmic microtubules is reported. In cells containing short spindles still entirely within the mother cells, one of the bundles of cytoplasmic microtubules nearly always extended to (or into) the bud. Two independent reagents (anti-yeast actin and fluorescent phalloidin) revealed an unusual distribution of actin: it was present as a set of cortical dots or patches and also as distinct fibers that were presumably bundles of actin filaments. Double labeling showed that at no stage in the cell cycle do the distributions of actin and tubulin coincide for any significant length, and, in particular, that the mitotic spindle did not stain detectably for actin. However, both microtubule and actin staining patterns change in a characteristic way during the cell cycle. In particular, the actin dots clustered in rings about the bases of very small buds and at the sites on unbudded cells at which bud emergence was apparently imminent. Later in the budding cycle, the actin dots were present largely in the buds and, in many strains, primarily at the tips of these buds. At about the time of cytokinesis the actin dots clustered in the neck region between the separating cells. These aspects of actin distribution suggest that it may have a role in the localized deposition of new cell wall material.  相似文献   

5.
There is evidence that the profilin:actin complex is the immediate precursor in the formation of actin filaments in cells. This paper describes the cell morphology and microfilament distribution after microinjection of covalently cross-linked profilin:beta/gamma-actin (PxA) in two different cell lines. Injected cells were either kept unstimulated or stimulated with platelet-derived growth factor (PDGF) before fixation and visualization of filamentous actin. After injection of low doses of PxA, the cells displayed an actin organization characterized by a clearance of diffuse fluorescence from a region immediately interior of ruffling edges and the appearance of small dots of fluorescence in the same region. At higher concentrations, PxA effectively inhibited outgrowth of lamellae and microspikes, and there was a drastic reduction of actin staining in the zone behind the advancing edge. This effect is reminiscent of the effect of cytochalasin B on fibroblasts and the growth cone of neuronal cells. As in these cases, there remained a rim of actin-dependent fluorescence on the very edge of the membrane lamella, particularly in the PxA-treated fibroblasts. The interference of PxA with the formation of surface structures was pronounced after PDGF stimulation. Here, PxA effectively eliminated the enhancement of the ruffling activity in the cell edges and on the dorsal surface of the cells. In contrast to PxA, injection of non-cross-linked profilin:beta/gamma-actin had no apparent effect on cell morphology and microfilament distribution except for an increased concentration of filamentous actin in one of the cell lines.  相似文献   

6.
We have developed an improved electron microscopic procedure appropriate for correlative light and electron microscopy of the cytoskeleton. The procedure is based on detergent extraction, chemical fixation, critical point drying, and platinum/carbon coating of cultured cells and the improvements consist of modifications which are minor individually but collectively of substantial impact. They are: inclusion of polyethylene glycol into the extraction medium; cell lysis at room temperature; fixation by sequential application of glutaraldehyde, tannic acid, and uranyl acetate; horizontal position of specimens during dehydration and drying; and uranyl acetate treatment during dehydration. As a result, we have obtained a greatly improved quality of electron microscopic images together with a high consistency of results. Long and straight actin filaments were clearly seen in stress fibers and newly formed lamellipodia. Their polarity was distinctly revealed by decoration with myosin subfragment 1. Depletion of actin from cytoskeletons by gelsolin treatment allowed for better visualization of myosin, intermediate filaments, and microtubules. Intermediate filaments exposed by this treatment exhibited numerous side projections in a hitherto unreported millipede-like appearance. The suggested procedure was compatible with immunogold labeling as demonstrated with an antibody to tubulin. Correlative light and electron microscopy of cells microinjected with a fluorescent derivative of myosin II was reliable and efficient, producing a close resemblance between the two kinds of images.  相似文献   

7.
A three-dimensional culture method is described in which primary pituitary adenoma cells are grown in alginate beads. Alginate is a polymer derived from brown sea algae. Briefly, the tumor tissue is cut into small pieces and submitted to an enzymatic digestion with collagenase and trypsin. Next, a cell suspension is obtained. The tumor cell suspension is mixed with 1.2% sodium alginate and dropped into a CaCl2 solution, and the alginate/cell suspension is gelled on contact with the CaCl2 to form spherical beads. The cells embedded in the alginate beads are supplied with nutrients provided by the culture media enriched with 20% FBS. Three-dimensional culture in alginate beads maintains the viability of adenoma cells for long periods of time, up to four months. Moreover, the cells can be liberated from the alginate by washing the beads with sodium citrate and seeded on glass coverslips for further immunocytochemical analyses. The use of a cell culture model allows for the fixation and visualization of the actin cytoskeleton with minimal disorganization. In summary, alginate beads provide a reliable culture system for the maintenance of pituitary adenoma cells.  相似文献   

8.
Actin Localization during Fucus Embryogenesis   总被引:15,自引:4,他引:11       下载免费PDF全文
Embryogenesis in the Fucales serves as a model system for studying the acquisition of cellular and developmental polarity. Fertilized eggs bear no asymmetry, yet within 16 hours, a developmental axis is formed and the unicellular zygote germinates in accordance with this axis. Microfilaments (actin) play a crucial role in establishing the axis as evidenced by the inhibitory effects of cytochalasins on axis fixation. The cellular content of actin was determined by immunoblot, whereas the localization of F-actin was investigated using the fluorescent probe rhodamine phalloidin. Three isoforms of actin were detected in constant amounts at all developmental stages. Actin networks were found to be distributed uniformly in eggs and zygotes through the period of early zygote development when the polar axis was formed. However, as the polar axis became irreversibly fixed in space, actin was localized at the presumptive germination site by a cytochalasin-sensitive process. This correlation supports the proposal that actin networks play a critical role in axis fixation, and is consistent with our hypothesis that this process involves stabilization of membrane components by transmembrane bridges from the cell wall to the microfilament cytoskeleton.  相似文献   

9.
Significant recent progress toward understanding directional expansion in diffusely growing plant cells concerns actin. Tools for imaging actin, including both live-cell reporters and fixation protocols, have been improved. Proteins that interact with actin have been identified and their functions probed biochemically and genetically. Specifically, members of the actin-related protein2/3 (ARP2/3) complex and the Wiskott-Aldrich syndrome Verprolin-homologous (WAVE) complex have been identified. These proteins have salient functions in shaping trichomes and leaf pavement cells. Additionally, two targets of a rho-of-plants (ROP) G-protein have been discovered that exert opposing regulatory action on actin and microtubules, a pathway that appears to be responsible for establishing the undulating shapes of pavement cells. Finally, several mutants of the fragile fiber class have revealed a link between actin organization, cell wall synthesis, and phosphoinositol signaling.  相似文献   

10.
Summary Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

11.
Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

12.
Summary Actin filaments in cultured tobacco cells were stained by rhodamine-phalloidin after pretreatment with 100 M m-maleidobenzoyl N-hydroxysuccinimide ester (MBS) followed by formaldehyde fixation. The use of MBS prior to formaldehyde fixation enabled us to visualize fine, transversely arranged cortical actin filaments in a majority of interphase tobacco cells. It also enabled us to double-stain fine actin filaments and microtubules in the same cells. The pattern of actin filaments and that of microtubules in the cortical region of a single tobacco cell bore a close resemblance to each other. The method which employed MBS was found to be useful also in visualizing fine cortical actin filaments in inner epidermal cells of onion bulbs.Rhodamine-phalloidin seemed to induce the bundling of actin filaments both tobacco cells and in onion cells when it was applied to the cells which had not been subjected to fixation, indicating that the application of fluorescent-dye-labeled phallotoxins to unfixed cells involves the risk of observing artifically bundled actin filaments.  相似文献   

13.
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.  相似文献   

14.
Localization of mRNA is a well-described mechanism to account for the asymmetric distribution of proteins in polarized somatic cells and embryos of animals. In zygotes of the brown alga Fucus, F-actin is localized at the site of polar growth and accumulates at the cell plates of the first two divisions of the embryo. We used a nonradioactive, whole-mount in situ hybridization protocol to show the pattern of actin mRNA localization. Until the first cell division, the pattern of actin mRNA localization is identical to that of total poly(A)+ RNA, that is, a symmetrical distribution in the zygote followed by an actin-dependent accumulation at the thallus pole at the time of polar axis fixation. At the end of the first division, actin mRNA specifically is redistributed from the thallus pole to the cell plates of the first two divisions in the rhizoid. This specific pattern of localization in the zygote and embryo involves the redistribution of previously synthesized actin mRNA. The initial asymmetry of actin mRNA at the thallus pole of the zygote requires polar axis fixation and microfilaments but not microtubules, cell division, or polar growth. However, redistribution of actin mRNA from the thallus pole to the first cell plate is insensitive to cytoskeletal inhibitors but is dependent on cell plate formation. The F-actin that accumulates at the rhizoid tip is not accompanied by the localization of actin mRNA. However, maintenance of an accumulation of actin protein at the cell plates of the rhizoid could be explained, at least partially, by a mechanism involving localization of actin mRNA at these sites. The pattern and requirements for actin mRNA localization in the Fucus embryo may be relevant to polarization of the embryo and asymmetric cell divisions in higher plants as well as in other tip-growing plant cells.  相似文献   

15.
The study of proteins associated with lipid droplets in adipocytes and many other cells is a rapidly developing area of inquiry. Although lipid droplets are easily visible by light microscopy, few standardized microscopy methods have been developed. Several methods of chemical fixation have recently been used to preserve cell structure before visualization of lipid droplets by light microscopy. We tested the most commonly used methods to compare the effects of the fixatives on cellular lipid content and lipid droplet structure. Cold methanol fixation has traditionally been used before visualization of cytoskeletal elements. We found this method unacceptable for study of lipid droplets because it extracted the majority of cellular phospholipids and promoted fusion of lipid droplets. Cold acetone fixation is similarly unacceptable because the total cellular lipids are extracted, causing collapse of the shell of lipid droplet-associated proteins. Fixation of cells with paraformaldehyde is the method of choice, because the cells retain their lipid content and lipid droplet structure is unaffected. As more lipid droplet-associated proteins are discovered and studied, it is critical to use appropriate methods to avoid studying artifacts.  相似文献   

16.
A simple method for the lectin histochemical visualization of rat microglial cells is described. Advantages include ease of fixation of brain tissue using paraformaldehyde, and rapidity of tissue processing by vibratome sectioning. Furthermore, in addition to providing good structural preservation, the method achieves improved lectin binding, resulting in complete labeling of all microglial cells and in superior visualization of cellular processes. The lectin histochemical technique for rat microglia has the potential to be adapted to any mammalian species, and should prove valuable for neuroscientists interested in studying this glial cell type.  相似文献   

17.
Actin polymerization controls a range of cellular processes, from intracellular trafficking to cell motility and invasion. Generation and elongation of free barbed ends defines the regions of actively polymerizing actin in cells and, consequently, is of importance in the understanding of the mechanisms through which actin dynamics are regulated. Herein we present a method that does not involve cell permeabilization and provides direct visualization of growing barbed ends using photoswitchable β-actin-Dendra2 constructs expressed in murine macrophage and rat mammary adenocarcinoma cell lines. The method exploits the ability of photoconverted (red) G-actin species to become incorporated into pre-existing (green) actin filaments, visualized in two distinct wavelengths using TIRF microscopy. In growing actin filaments, photoconverted (red) monomers are added to the barbed end while only green monomers are recycled from the pointed end. We demonstrate that incorporation of actin into intact podosomes of macrophages occurs constitutively and is amenable to inhibition by cytochalasin D indicating barbed end incorporation. Additionally, actin polymerization does not occur in quiescent invadopodial precursors of carcinoma cells suggesting that the filaments are capped and following epidermal growth factor stimulation actin incorporation occurs in a single but extended peak. Finally, we show that Dendra2 fused to either the N- or the C-terminus of β-actin profoundly affects its localization and incorporation in distinct F-actin structures in carcinoma cells, thus influencing the ability of monomers to be photoconverted. These data support the use of photoswitchable actin-Dendra2 constructs as powerful tools in the visualization of free barbed ends in living cells.  相似文献   

18.
19.
By means of paraformaldehyde fixation, Triton X-100 extraction and TRITC-phalloidin staining, the presence and distribution patterns of F-actin in the outer epidermal cells of the garlic (Allium sativum L.) sheath were studied with fluorescence probe technique and confocal laser scanning microscopy. There were a lot of actin filaments (AFs) impenetrate the cell wall, but the AFs with red fluorescence were absent when the cells were treated with cytochalasin D before fixation; the same result was obtained when the cells were treated with unlabeled phalloidin. These results indicate the presence of F-actin in the intercellular channels and that it is related to the plasmodesmata and intercellular trafficking of macromolecules.  相似文献   

20.
For walled plant cells, the immunolocalization of actin microfilaments, also known as F-actin, has proved to be much trickier than that of microtubules. These difficulties are commonly attributed to the high sensitivity of F-actin to aldehyde fixatives. Therefore, most plant studies have been accomplished using fluorescent phallotoxins in fresh tissues. Nevertheless, concerns regarding the questionable ability of phallotoxins to bind the whole complement of F-actin necessitate further optimization of actin immunofluorescence methods. We have compared two procedures: (1) formaldehyde fixation and (2) rapid freezing and freeze substitution (cryofixation), both followed by embedding in low-melting polyester wax. Actin immunofluorescence in sections of garden cress (Lepidium sativum L.) root gave similar results with both methods. The compatibility of aldehydes with actin immunodetection was further confirmed by the freeze-shattering technique that does not require embedding after aldehyde fixation. It appears that rather than aldehyde fixation, some further steps in the procedures used for actin visualization are critical for preserving F-actin. Wax embedding, combined with formaldehyde fixation, has proved to be also suitable for the detection of a wide range of other antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号