首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
昆虫中肠对Bt原毒素活化与对活化毒素降解的变化被认为是害虫对Bt产生的机制之一,研究比较棉铃虫Helicoverpa armigern(Hǔbner)与甜菜夜蛾Spodoptera exigm(Hǔbner)的中肠液、BBMV蛋白酶的活性,通过SDS-PAGE分析2种昆虫对原毒素的活化速度与对活化毒素的降解速度。2种昆虫的中肠液蛋白酶活性均显著高于BBMV蛋白酶活性,中肠液与BBMV均能迅速活化原毒素并继续降解活化后的毒素,与中肠液相比,BBMV对原毒素的活化与对活化毒素的降解均慢于中肠液,甜菜夜蛾对毒素的活化与降解又慢于棉铃虫。另外,还测定抑制剂对中肠液蛋白酶活性的抑制作用,结果表明,各抑制剂对棉铃虫和甜菜夜蛾相应酶活性的抑制表现出相同的趋势,TLCK对丝氨酶蛋白酶具较好的抑制作用,而PMSF对胰蛋白酶的抑制作用次之,TPCK对胰凝乳蛋白酶的抑制作用较弱。  相似文献   

2.
昆虫中肠对Bt原毒素活化与对活化毒素降解的变化被认为是害虫对Bt产生的机制之一,研究比较棉铃虫Helicoverpa armigera(Hübner)与甜菜夜蛾Spodoptera exigua(Hübner)的中肠液、BBMV蛋白酶的活性,通过SDS-PAGE分析2种昆虫对原毒素的活化速度与对活化毒素的降解速度。2种昆虫的中肠液蛋白酶活性均显著高于BBMV蛋白酶活性,中肠液与BBMV均能迅速活化原毒素并继续降解活化后的毒素,与中肠液相比,BBMV对原毒素的活化与对活化毒素的降解均慢于中肠液,甜菜夜蛾对毒素的活化与降解又慢于棉铃虫。另外,还测定抑制剂对中肠液蛋白酶活性的抑制作用,结果表明,各抑制剂对棉铃虫和甜菜夜蛾相应酶活性的抑制表现出相同的趋势,TLCK对丝氨酶蛋白酶具较好的抑制作用,而PMSF对胰蛋白酶的抑制作用次之,TPCK对胰凝乳蛋白酶的抑制作用较弱。  相似文献   

3.
本文研究了苏云金芽孢杆菌Z113菌株在发酵过程中形成的伴孢晶体的形态及毒素蛋白的杀虫活性 ,并考察了该菌株的发育状况、OD值、pH值及不同发育时期毒素蛋白和杀虫活性的变化 ,确定了Z113菌株杀虫毒力与晶体蛋白之间的关系。  相似文献   

4.
紫外线使苏云金芽孢杆菌伴孢晶体失活机理的研究   总被引:9,自引:0,他引:9       下载免费PDF全文
崔云龙  田明  邵宗泽   《微生物学通报》1993,20(4):193-195
用电镜、电泳、生物鉴定等方法,研究了紫外线对苏云金芽孢杆菌库斯塔克变种的伴孢晶体的影响。结果表明,紫外线能破坏伴孢晶体的表面结构和形态,降低伴孢晶体在碱性液和蚕胃液中的溶解度,5小时以上的长时间照射,能导致伴孢晶体完全不溶,因而不能降解为具有杀虫活性的毒素蛋白而失活。  相似文献   

5.
在透射和扫描电镜下观察了土壤来源的94株苏云金芽孢杆菌(Bacillus thuringiensis)的菌体、鞭毛、芽孢及伴孢晶体的形态。以快速SDS—PAGE法分析了全部菌株δ-内毒素的蛋白质成分。用鳞翅目、鞘翅且及双翅目的9种昆虫进行了毒力试验。筛选出了数株杀鞘翅目和杀夜蛾科害虫的高效菌。发现了一些新型伴孢晶体,其形态和蛋白质成分均未报道过。  相似文献   

6.
苏云金芽孢杆菌杀虫晶体蛋白与DNA分子的相互作用   总被引:2,自引:0,他引:2  
苏云金芽孢杆菌 (Bacillusthuringiensis,简称Bt)在形成芽孢的同时能够产生伴孢晶体 ,其中含有一种或几种杀虫晶体蛋白 (ICPs,InsecticidalCrystalProteins) ,即δ 内毒素[1] 。伴孢晶体进入敏感昆虫的消化道后发生溶解并释放出 2 7~ 1 40kD的原毒素。在中肠蛋白酶的作用下 ,原毒素被激活为 2 3~ 70kD的毒性多肽[2~ 4 ] 。随后毒素与中肠刷状缘膜泡 (BBMV ,BrushBorderMembraneVesicle)上的特异受体发生结合并且在细胞膜上形成孔道 ,破坏细胞…  相似文献   

7.
研究了由乳化剂、湿润剂、防腐剂和少量氯氰菊醴配制的几种乳剂组合对苏云金芽孢杆菌芽孢和伴孢晶体的影响及所形成的悬乳剂的稳定性。分析了不同化学助剂组合与孢晶混合物在不同贮存期的毒力变化、晶体蛋白质的降解及芽孢存活率。从供试的助剂组合中获得了一种最佳组合,可发展为一种新型的苏云金杆菌悬乳剂。  相似文献   

8.
李荣森  罗成 《昆虫学报》1989,32(2):149-157
研究了苏芸金杆菌(Bacillus thuringiensis)3个变种6个菌株的提纯伴孢晶体和芽孢对大蜡螟(Galleria mellonella)和大菜粉蝶(Pieris brassicae)的毒力、晶体的蛋白质和多肽成分及芽孢衣中的类晶体蛋白质成分.生物测定表明,晶体毒力高于芽孢,在总数量相同的情况下,晶体和芽孢近1:1的混合物的毒力高于单独的晶体或芽孢.芽孢衣中存在一种类似晶体蛋白质的成分,无晶体突变株及无效野生株的芽孢则无此种蛋白质且对两种昆虫无毒.变种wuhanensis和变种galleriae的晶体含MW138000的主要蛋白质和63000的次要蛋白质,经碱性缓冲液溶解后,上清液含MW138000的蛋白质,沉淀中含MW63000的蛋白质;变种aizawai的晶体中仅含138000的蛋白质.对大蜡螟无毒的HD-11(var.aizawai)晶体的蛋白质成分有别于上述晶体,其胰蛋白酶消化物的SDS凝胶电泳图型显示少2条多肽带,但对大菜粉蝶仍有效.结果表明,苏芸金杆菌的芽孢在昆虫病理中有重要作用,伴孢晶体的蛋白质和多肽成分与它们对昆虫的毒力特性之间有密切关系.  相似文献   

9.
苏云金杆菌能产生伴孢晶体蛋白,又叫δ—内毒素,对鳞翅目、双翅目、甚至鞘翅目的许多种昆虫幼虫有毒性。这类蛋白在芽孢形成期大量合成。对鳞翅目昆虫有毒的伴孢晶体一般为双金字塔形,蛋白质分子量为1.3×10~5道尔顿,对双翅目昆虫有毒的伴孢晶体一般为不规则的立方体,蛋白质分子量6.5×10~4道尔顿。对鞘翅目昆虫有毒的伴孢晶体一般为扁平长方形,蛋白质分子量为6.4×10~4道尔顿。对毒素蛋白的分离纯化办法、物理化学性质、毒理以及其它方面的研究现状做了介绍。  相似文献   

10.
谷氨酸对苏云金杆菌的芽孢和伴孢晶体的影响   总被引:2,自引:0,他引:2  
研究了不同浓度的谷氨酸对苏云金芽孢杆菌形态、菌体浓度及芽孢和件孢晶体的影响.研究表明,一定浓度的谷氨酸有利于菌体的生长并能够提高菌体的增殖速度,对芽孢和伴孢晶体的形态没有明显的影响,但对芽孢的裂解有明显地抑制作用.  相似文献   

11.
Crystal proteins synthesized by Bacillus thuringiensis (Bt) have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid) (PAH) and poly (styrene sulfonate) (PSS) were fabricated through layer-by-layer self-assembly based on a CaCO3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM) was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM), using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac). The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects’ midgut, which has shown potential as biopesticide in the field.  相似文献   

12.
The midgut proteases of the Bacillus thuringiensis resistant and susceptible populations of the diamondback moth, Plutella xylostella L. were characterized by using protease specific substrates and inhibitors. The midgut contained trypsin-like proteases of molecular weights of 97, 32, 29.5, 27.5, and 25 kDa. Of these five proteases, 29.5 kDa trypsin-like protease was the most predominant in activation of protoxins of Cry1Aa and Cry1Ab. The activation of Cry1Ab protoxin by midgut protease was fast (T(1/2) of 23-24 min) even at a protoxin:protease ratio of 250:1. The protoxin activation appeared to be multi-step process, and at least seven intermediates were observed before formation of a stable toxin of about 57.4 kDa from protoxin of about 133 kDa. Activation of Cry1Aa was faster than that of Cry1Ab on incubation of protoxins with midgut proteases and bovine trypsin. The protoxin and toxin forms of Cry proteins did not differ in toxicity towards larvae of P. xylostella. The differences in susceptibility of two populations to B. thuringiensis Cry1Ab were not due to midgut proteolytic activity. Further, the proteolytic patterns of Cry1A protoxins were similar in the resistant as well as susceptible populations of P. xylostella.  相似文献   

13.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices 1 and 2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the 1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

14.
No significant difference in larval mortality was observed when a sublethal dose of Bacillus thuringiensis (Bt) var. kurstaki HD-1 crystal was supplemented with soybean trypsin inhibitor (STI) in the artificial diet fed to Helicoverpa armigera in the laboratory, but supplementing a nonlethal dose of crystal with STI in the diet led to a pronounced reduction of larval growth. This concentration of crystal and two lower concentrations of STI alone had no significant effects on larval growth. The results of substrate-gel electrophoresis demonstrated that the proteases in the H. armigera midgut fluid responsible for the degradation of protoxin consisted of at least four proteases with molecular weights of 71, 49, 36, and 30 kDa. All four proteases could utilize casein also as the substrate. When larvae were fed with STI or Bt + STI, the proteolytic activities of the 49-kDa enzyme disappeared, and the activities of the other three enzymes were reduced. Enzyme assays also indicated that feeding larvae with diets containing Bt, STI, or Bt + STI significantly decreased the specific activities of larval general proteases and the trypsin-like enzyme. The protein concentration of midgut fluid was elevated, especially in the larvae fed on the diets containing STI and Bt + STI. Both in vitro and in vivo studies showed that the degradation of protoxin and toxin could be inhibited by soybean trypsin inhibitors, but when the incubation time was prolonged, the protoxin could be degraded completely, while the degradation of toxin was inhibited further. This suggested that the retention time of toxins in the larval midgut was extended and synergism between insecticidal crystal protein and soybean trypsin inhibitor occurred, which showed as the inhibition of H. armigera larval growth.  相似文献   

15.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices α1 and α2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the α1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

16.
以甜菜夜蛾为试虫,测定了粘虫颗粒体病毒(PuGV-Ps)对苏云金杆菌(Bt)毒力的增效作用。结果表明PuGV对甜菜夜蛾没有致毒作用,但Bt中加入PuGV后可以提高Bt对甜菜夜蛾的毒力,甜菜夜蛾致死中量LC50由Bt单剂的1.094mg/mL下降到0.862mg/mL,共毒系数达127。亚致死剂量Bt处理甜菜夜蛾影响了幼虫的生长发育,表现为幼虫生长量相对减少、蛹重下降、化蛹率降低和化蛹历期延长,添加了PuGV-Ps后进一步增强了Bt对甜菜夜蛾的生长发育的抑制作用。甜菜夜蛾中肠蛋白酶活性测定结果表明,PuGV-Ps对甜菜夜蛾中肠酶活性具有抑制作用;昆虫同时取食PuGV-Ps和Bt后,中肠酶液总蛋白酶活力都有所下降,在中肠酶液最适pH范围内蛋白酶活力抑制作用最明显。  相似文献   

17.
We have isolated a strain of Bacillus thuringiensis (Bt) from Indian soil samples that was shown to be toxic to Achaea janata larvae. The isolate, named B. thuringiensis DOR4, serotypically identified with the standard subspecies kurstaki (H3a3b3c) and produced bipyramidal inclusions along with an amorphous type. Although the plasmid pattern of DOR4 was different from that of the reference strain, a crystal protein profile showed the presence of two major bands (130 and 65 kDa) similar to those of Bt subsp. kurstaki HD-1. To verify the cry gene content of DOR4, triplex PCR analysis was performed; it showed amplification of the cry1C gene in addition to cry1Aa, cry1Ac, cry2A, and cry2B genes, but not the cry1Ab gene. RT-PCR analysis showed the expression of cry1Aa and cry1Ac genes. In vitro proteolysis of DOR4 protoxin with midgut extract generated products of different sizes. Zymogram analysis of DOR4 protoxin as substrate pointed to a number of distinct proteases that were responsible for activation of protoxins. Furthermore, toxin overlay analysis revealed the presence of multiple toxin-binding proteins in midgut epithelium. Based on all these characterizations, we suggest that the Bt DOR4 strain can be exploited for an A. janata control program.  相似文献   

18.
《Process Biochemistry》2007,42(5):773-790
Bacillus thuringiensis (Bt) subspecies produces metalloproteases and serine alkaline proteases (endogenous) which affect sporulation and entomotoxicity against different insect orders. The production of Bt proteases is investigated in conventional medium and alternative substrates with future repercussions on Bt formulations and larval mortality. Relationship between protease activity and total cell count during Bt fermentation has been discussed while protease activity as a potential indicator of entomotoxicity has also been explored. In general, the proteases influence entomotoxicity in two divergent ways—processing of inactive protoxins to active toxin fractions (by endogenous Bt as well as exogenous larval midgut proteases) and degradation of protoxins to fragments which sometimes lack insecticidal activity (usually by Bt proteases). In fact, the function of endogenous (intra and extracellular) proteases is ambiguous and has been raising serious questions on their role in larval mortality. The review explores various schools of thoughts (traditional as well as advanced) to solve the enigma of protease interactions with crystal toxins at different levels (sporulation and insecticidal action).  相似文献   

19.
Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. This study was conducted to evaluate the interaction of proteinase inhibitors with Bt toxin and to examine midgut trypsin gene profile of Heliothis virescens. A sublethal dose (15ppb) of Cry1Ac, 0.75% soybean trypsin inhibitor, and 0.1% and 0.2% N-α-tosyl-L-lysine chloromethyl ketone significantly suppressed midgut proteinase activities, and resulted in reductions in larval and pupal size and mass. The treatment with inhibitor+Bt suppressed approximately 65% more larval body mass and 21% more enzymatic activities than the inhibitor-only or Bt-only. Eleven trypsin-like cDNAs were sequenced from the midgut of H. virescens. All trypsins contained three catalytic center residues (H(73), D(153), and S(231)), substrate specificity determinant residues (D(225), G(250), and G(261)), and six cysteines for disulfide bridges. These putative trypsins were separated into three distinct groups, indicating the diverse proteinases evolved in this polyphagous insect. These results indicated that the insecticidal activity of proteinase inhibitors may be used to enhance Bt toxicity and delay resistance development.  相似文献   

20.
Bacillus thuringiensis protoxins undergo proteolytic processing in the midgut of susceptible insects to become active. The ability to process the Cry11Bb1 protoxin by trypsin and Culex quinquefasciatus larval gut extracts was tested. The protease activity indicated by the appearance of proteolytic products increased with an increment in pH, with the highest activity being observed at pH 10.6. A time course study showed the proteolysis of the 94-kDa Cry11Bb protein ending with the production of fragments of relative molecular mass of 30 and 35 kDa within 5 min. In vitro, gut proteases extract cleaved the solubilized toxin between Ser59 and Ile60 and between Ala395 and Asn396, generating a 30-kDa N-terminal and a 35-kDa C-terminal fragment, respectively. Similarly, mosquito larvae processed in vivo the parasporal inclusions, generating the same fragments as those observed in vitro. The Cry11Bb1 protoxin activated with trypsin or gut proteases showed larvicidal activity against C. quinquefasciatus first instar larvae. The data suggest that gut proteases participate in the activation of CryllBbl protoxin, generating at least two different fragments on which the activity could reside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号