首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
以宁麦9号和豫麦34号为材料,研究了氮肥基追比对土壤无机氮时空变化、氮素表观盈亏和氮肥利用率的影响。结果表明,施用基肥提高了越冬期0-60 cm土层NO3--N和NH4+-N含量,拔节期追肥对孕穗期各土层无机氮含量无显著影响,追施孕穗肥显著提高了开花期0-60 cm土层硝态氮含量和0-20 cm土层铵态氮含量。不施氮处理各生育阶段均表现为氮素亏缺,施氮处理氮素盈亏呈明显的阶段性,播种至孕穗阶段出现氮素盈余,孕穗至成熟阶段出现氮素亏缺;全生育期氮素表观盈余量两品种平均以5∶5处理最低,7∶3处理最高。两品种氮肥农学效率、氮肥表观回收率和产量均随基肥比例的增加呈先增后降的趋势,均以5∶5处理最高。因此,在小麦生产中应适当减少基施氮肥用量,在小麦拔节孕穗期适当增加追肥比例有利于提高产量和氮肥利用效率,并降低土壤氮素损失。  相似文献   

2.
土壤硝态氮时空变异与土壤氮素表观盈亏Ⅱ.夏玉米   总被引:38,自引:5,他引:33  
在不同氮肥用量下研究了夏玉米生育期间土壤硝态氮的时空变化特征 ,同时对不同生育阶段土壤氮素的盈余与亏缺进行了表观估算 ,结果表明 :0~ 1 0 0 cm土体内 ,夏玉米一生中土壤硝态氮均表现为在中间土层含量低 ,上层和下层含量高 ,一般以表层最高 ,但受降雨的影响在高氮肥处理会出现下层高于表层的现象。施氮肥提高了土壤硝态氮含量 ,而且提高程度与用量成正相关。降雨时土壤硝态氮可随水下移 ,在干旱条件下也可随水上移。土壤硝态氮的运移不仅受土壤水分状况的影响 ,还取决于硝态氮含量 ,含量越高 ,向下移动的越深 ,淋失的可能性越大 ;在本试验条件下 ,土壤氮素盈余主要出现在夏玉米播种~ 9叶展和 9叶展~吐丝两个生育阶段 ,吐丝~收获则出现土壤氮素的亏缺。随着氮肥用量的增加 ,玉米一生中土壤氮素的表观盈余量明显增大 ,最高平均可达 2 74 .1 kg N/hm2。研究结果表明 ,土壤氮损失是盈余氮素的一个主要去向 ,而硝态氮淋洗是夏玉米生育期间土壤氮素损失的一个重要途径。  相似文献   

3.
石玉  于振文 《生态学报》2006,26(11):3661-3669
研究了高产麦田中施氮量和底追比例对冬小麦籽粒产量、土壤硝态氮含量和氮素平衡的影响。田间试验在山东省龙口市中村进行,试验区小麦各生育阶段的降雨量和零度以上的积温分别为:82.9mm,649.8℃(播种~冬前)、33.3mm,578.7℃(冬前~拔节)2、8mm,359℃(拔节~开花)、84.3mm,837.6℃(开花~成熟)。试验设3个施氮量:0kg.hm-2(CK)、168kg.hm-2(A)、240kg.hm-2(B);在施氮量168kg.hm-2和240kg.hm-2条件下分别设3个底追比例:1/2∶1/2(A1和B1)、1/3∶2/3(A2和B2)、0∶1(A3和B3)。结果表明:不同施氮处理之间植株氮积累量无显著差异;与不施氮处理相比,施氮可显著提高籽粒产量和蛋白质含量,施氮量为168kg.hm-2、底追比例为1/3∶2/3的处理A2与处理B2、B3差异不显著,但处理A2显著提高了氮肥利用率,降低了土壤残留量和氮素表观损失量;施氮量相同,适当增加追施氮肥的比例可显著提高籽粒产量、蛋白质含量和氮肥利用率。试验还表明,在拔节期,底施氮量为84kg.hm-2和120kg.hm-2的处理A1、B1,在80~100cm和100~160cm土层分别出现硝态氮的累积;而底施氮量为56kg.hm-2的处理A2,在0~200cm土层硝态氮含量和累积量与不施氮处理无显著差异。在成熟期,追施氮量大于160kg.hm-2的处理B3、A3和B2,硝态氮在120~180cm土层出现累积高峰,已下移到小麦根系可吸收范围之外,易于造成淋溶损失;而追氮量为112kg.hm-2的处理A2,在100~200cm土层硝态氮累积量与对照无显著差异。试验中,施氮量为168kg.hm-2底追比例为1/3∶2/3的处理A2的籽粒产量、蛋白质含量、地上部植株氮肥吸收利用率、氮肥农学利用率和籽粒氮肥吸收利用率均较高,100~200cm土层未出现硝态氮的明显累积,氮素表观损失量最少,为最佳氮肥运筹方式。  相似文献   

4.
长江流域稻麦轮作条件下冬小麦适宜施氮量   总被引:1,自引:0,他引:1  
为推动长江流域稻茬冬小麦氮肥的合理施用,研究了施氮量(0、120、210、300 kg·hm-2,分别表示为N0、N1、N2、N3)对土壤硝态氮含量、土壤-植株系统氮素平衡和产量的影响。结果表明: 土壤剖面的硝态氮含量随施氮量的增加而增加,至拔节期,不同施氮处理的硝态氮均显著运移至60 cm土层。拔节后追施氮肥显著提高了N1、N2处理0~40 cm土层和N3处理0~60 cm土层的硝态氮含量;而成熟期的硝态氮主要积累于0~40 cm土层。氮素平衡分析表明,氮素吸收、残留、损失因小麦不同生育阶段而异,越冬至拔节期是氮素表观损失的主要时期;小麦全生育期植株的氮素积累量、无机氮残留量和土壤氮素表观损失量均随施氮量的增加而显著增加。通过环境经济学的Coase原理和边际收益综合分析,稻茬小麦兼顾生产、生态和经济效益的适宜氮肥用量为250 kg·hm-2,基肥与拔节肥的比例为5∶5,相应获得的籽粒产量为6840 kg·hm-2。  相似文献   

5.
石玉  于振文 《生态学报》2006,26(11):3661-3669
研究了高产麦田中施氮量和底追比例对冬小麦籽粒产量、土壤硝态氮含量和氮素平衡的影响。田间试验在山东省龙口市中村进行,试验区小麦各生育阶段的降雨量和零度以上的积温分别为:82.9mm, 649.8℃ (播种~冬前)、33.3mm, 578.7℃(冬前~拔节)、28mm, 359℃(拔节~开花)、84.3mm, 837.6℃(开花~成熟)。试验设3个施氮量:0kg•hm-2(CK)、168kg•hm-2(A)、240kg•hm-2(B);在施氮量168kg•hm-2和240kg•hm-2条件下分别设3个底追比例:1/2∶1/2(A1和B1)、1/3∶2/3(A2和B2)、0∶1(A3和B3)。结果表明:不同施氮处理之间植株氮积累量无显著差异;与不施氮处理相比,施氮可显著提高籽粒产量和蛋白质含量,施氮量为168kg•hm-2、底追比例为1/3∶2/3的处理A2与处理B2、B3差异不显著,但处理A2显著提高了氮肥利用率,降低了土壤残留量和氮素表观损失量;施氮量相同,适当增加追施氮肥的比例可显著提高籽粒产量、蛋白质含量和氮肥利用率。试验还表明,在拔节期,底施氮量为84kg•hm-2和120kg•hm-2的处理A1、B1,在80~100cm和100~160cm土层分别出现硝态氮的累积;而底施氮量为56kg•hm-2的处理A2,在0~200cm土层硝态氮含量和累积量与不施氮处理无显著差异。在成熟期,追施氮量大于160kg•hm-2的处理B3、A3和B2,硝态氮在120~180cm土层出现累积高峰,已下移到小麦根系可吸收范围之外,易于造成淋溶损失;而追氮量为112kg•hm-2的处理A2,在100~200cm土层硝态氮累积量与对照无显著差异。试验中,施氮量为168kg•hm-2底追比例为1/3∶2/3的处理A2的籽粒产量、蛋白质含量、地上部植株氮肥吸收利用率、氮肥农学利用率和籽粒氮肥吸收利用率均较高,100~200cm土层未出现硝态氮的明显累积,氮素表观损失量最少,为最佳氮肥运筹方式。  相似文献   

6.
土壤硝态氮时空变异与土教育界氮素表观盈亏Ⅱ.夏玉米   总被引:3,自引:0,他引:3  
在不同氮肥用量下研究了夏玉米生育期间土壤硝态氮的时空变化特征,同时对不同生育阶段土壤氮素的盈余与亏缺进行了表观估算,结果表明:0-100cm土体内,夏玉米生中土壤硝态氮均表现为在中国土层含量低,上层和下层含量高,一般以表层最高,但受降雨的影响在高氮肥处理会出现下层高于表层的现象,施氮肥提高了土壤硝态氮含量,而且提高程度与用量成正相关,降雨时土壤硝态氮可随水下移,在干旱条件下也可随水上移,土壤硝态氮的运移不仅受土壤水分状况的影响,还取决于硝态氮含量,含量越高,向下移动的越深,淋失的可能性越大;在本试验条件下,土壤氮素盈余主要出现在夏玉米播种9叶展和9叶展-吐丝两个生育阶段,吐丝-收获则出现土壤氮素的亏缺,随着氮肥用量的增加,玉米一生中土壤氮素的表观盈余量明显增大,最高平均可达274.12kgN/hm^2。研究结果表明,土壤氮损失是盈余氮素的一个主要去向,而硝态氮淋洗是夏玉米生育期间土壤氮素损失的一个重要途径。  相似文献   

7.
施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响   总被引:13,自引:1,他引:12  
研究了不同施氮水平对高产麦田土壤硝态氮时空变化和氨挥发的影响.结果表明,高产麦田土壤硝态氮在播种至冬前阶段不断向深层移动,并在140cm以下土层积累.施纯氮96~168 kg·hm-2处理,增加了60 cm以上土层土壤硝态氮含量,降低了土壤氮素表观损失量占施氮量的比例,提高了小麦籽粒蛋白质含量和籽粒产量,且土壤氨挥发损失较低,基施氮氨挥发损失占基施氮量的4.23%~5.51%;施氮量超过240 kg N·hm-2,促进了土壤硝态氮向深层的移动和积累,基施氮氨挥发损失、土壤氮素表观损失量及其占施氮量的比例均显著升高,对小麦籽粒蛋白质含量无显著影响,但籽粒产量降低.高产麦田适宜的氮素用量为132~204 kg N·hm-2.  相似文献   

8.
研究了高产栽培条件下,不同施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响,同时计算了不同生育阶段土壤氮素的表观盈亏量.结果表明,与氮肥分期施用处理比较,氮肥全部用于拔节期追施处理降低了拔节期之前的土壤硝态氮含量,减少了拔节期之前土壤氮素的表观盈余量,降低了氮素向深层的淋洗;而挑旗期土壤硝态氮含量与氮肥分期施用处理无显著差异,但提高了土壤铵态氮含量;增加了成熟期0~60 cm土壤各土层土壤硝态氮含量和0~20 cm土壤铵态氮含量.氮肥全部用于拔节期追施的两处理间比较,在240 kg·hm-2的基础上降低施氮量至168 kg·hm-2,降低了挑旗期土壤硝态氮和铵态氮的含量,减少了挑旗期到成熟期土壤氮素的亏缺量,也使成熟期土壤硝态氮的含量降低.不同处理间籽粒产量和蛋白质产量无显著差异,施氮量为168 kg·hm-2且全部用于拔节期追施的处理籽粒蛋白质含量最高.  相似文献   

9.
灌溉量和施氮量对冬小麦产量和土壤硝态氮含量的影响   总被引:3,自引:1,他引:2  
Jiang DY  Yu ZW  Xu ZZ 《应用生态学报》2011,22(2):364-368
研究了大田条件下灌溉量和施氮量对小麦产量和土壤硝态氮含量的影响.结果表明:增加灌溉量,0~200 cm土层硝态氮含量呈先降后升又降的趋势.0~80 cm土层硝态氮含量显著低于对照,而80~200 cm土层硝态氮含量显著高于对照.随灌溉量的增加,土壤硝态氮向深层运移加剧,在成熟期,0~80 cm土层硝态氮含量降低,120~200 cm土层硝态氮含量升高,并在120~140 cm土层硝态氮含量出现高峰.灌溉量不变,施氮量由210 kg·hm-2增加到300 kg·hm-2,开花期、灌浆期、成熟期0~200 cm各土层土壤硝态氮含量显著升高.随灌溉量的增加,小麦籽粒产量先增加后降低,以全生育期灌溉量为60 mm的处理籽粒产量最高.增加施氮量,籽粒产量、蛋白质含量和蛋白质产量显著提高.本试验中,施氮量为210 kg.hm-2、两次灌溉总量为60 mm的处理籽粒产量、蛋白质含量、蛋白质产量和收获指数均较高,且土壤硝态氮损失少,是较合理的水氮运筹模式.  相似文献   

10.
水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响   总被引:22,自引:0,他引:22  
在高肥力条件下,大田试验采用裂区设计,主区为不同灌水频次(0~3次),裂区为不同施氮量(0~240 kg/hm2),结合15N微区示踪技术,研究了水氮耦合对冬小麦氮肥的吸收利用及生育后期土壤硝态氮累积迁移的影响.结果表明,在一定氮肥水平下,不灌水处理的氮肥利用率高于各灌水处理,各灌水处理的氮肥利用率随灌水次数增加呈上升趋势;增加灌水次数,氮肥耕层残留量和残留率显著降低,氮肥损失量和损失率则明显增加.在一定的灌溉水平上,随施氮量(0~240 kg/hm2)增加,植株总吸氮量、氮肥吸收量、氮肥耕层残留量、氮肥损失量以及损失率均呈上升趋势,而氮肥利用率和耕层残留率呈下降趋势.氮肥水平一定时,在灌0至灌2水范围内,籽粒产量随灌水次数增加呈上升趋势,灌3水处理中施氮处理(N168、N240)的籽粒产量较灌2水处理显著降低;灌水生产效率随灌水次数增加显著下降.在一定灌溉水平上,施氮量由168 kg/hm2增至240 kg/hm2,氮素收获指数和氮肥生产效率显著降低,各灌水处理的生物产量、籽粒产量和籽粒蛋白质含量均无显著变化,不灌水处理的生物产量、籽粒产量显著降低.灌水促进了施氮处理(N168,N240)中土壤硝态氮向下迁移,从开花到收获0~100 cm土层中部分硝态氮迁移到了100~200 cm土层.灌水次数是导致收获期0~100 cm土层残留NO-3-N累积量变化的主导因素;水氮互作效应是决定收获期100~200 cm土层残留NO-3-N累积量变化的主导因素,且灌水效应大于施氮效应.  相似文献   

11.
施氮量对夏季玉米产量及土壤水氮动态的影响   总被引:40,自引:0,他引:40  
在黄土高原南部旱地有大量氮素残留背景的田块上,研究了不同氮肥用量对夏玉米生长及对土壤水分、硝态氮、铵态氮累积及其剖面分布的影响。结果表明:适量施氮可以提高作物产量;过量施氮没有表现出增产效果,其氮肥利用率只有3.9%,残留率则高达87.2%。施氮240kghm^-2时,0~200cm土层土壤水分达到593mm,且可以下渗到200cm土层;不施氮和施氮120kghm^-2以小区土壤的蓄水量分别为561和553mm,可下渗到180cm。对矿质态氮而言,施氮量可以显著影响土壤中硝态氮的累积和分布,但对铵态氮的影响较小;施氮0,120,240kghm^-2时.收获期土壤硝态氮累积量分别为78,148,290kghm^-2,硝态氮的下移前沿分别到达60,60,140cm。可见,适量施氮会促进作物对土壤水氮的利用。提高作物生物量和产量;过量施氮导致硝态氮在土壤中大量累积,提高硝态氮随水分淋溶危险;但硝态氮向下层土壤的移动显著滞后于水分。  相似文献   

12.
Summary The importance of initial exchangeable soil NH 4 + in nitrogen nutrition and grain yield of rice was studied in a number of representative lowland rice soils in the Philippines. The initial exchangeable soil NH 4 + +fertilizer N plotted against nitrogen uptake by the crop resulted in a highly significant linear relationship (R2=0.91), suggesting that the presence of exchangeable NH 4 + in the soil at transplanting behaved like fertilizer nitrogen. The correlation between N fertilizer rate and N uptake by the rice crop was relatively poor (R2=0.73). On the other hand, relative grain yield was more closely correlated with the initial exchangeable soil NH 4 + +fertilizer N than with fertilizer nitrogen applied alone. These results indicate that the initial exchangeable NH 4 + in the soil contributed substantially to the nitrogen uptake of the crop.Critical nitrogen levels in the soil defined as the initial exchangeable soil NH 4 + +fertilizer N at which the optimum grain yield (95% of the maximum yield) is obtained, varied from 60 to 100 kg N/ha in the wet season and from 100 to 120 kg N/ha in the dry season for the different fertilizer treatments. The results further suggest that the initial exchangeable soil NH 4 + should serve as a guide in selecting an optimum nitrogen fertilizer rate for high grain yields.  相似文献   

13.
A simple N balance model was used to calculate fertilizer requirement for a target N uptake by maize. Nitrogen uptake from soil sources and target uptake of N with fertilizer N additions were obtained from fertilizer trials in Africa and Latin America. Most experiments had data for only one cropping period, although some from Latin America had data for four to six crops. The transfer coefficient of fertilizer N to the crop was adjusted to realize maximum recovery of fertilizer N under best methods of fertilizer application. The time constants of transfer of soil N to the crop were allowed to vary and were affected mainly by soil texture. Where 4 to 6 cropping periods were available good agreement between actual and predicted fertilizer N requirements was obtained. With this approach long-term fertilizer N requirements for 14 sites were predicted using first cropping period N uptake. This study showed that pools of organic N in more coarse-textured soils were usually smaller and declined more rapidly than in fine-textured soils. Labile organic N pools declined with time under all simulations, but approached equilibrium within 10 croppings seasons. Equilibrium N uptake from the soil organic N pool was predicted to be 31 kg ha–1 for the more coarse-textured soils and 36 kg ha–1 for the fine-textured soils. Long-term projections of fertilizer requirements using input data of the field experiments were reasonable, and effects of legume green manures and other amendments could be clearly evaluated.  相似文献   

14.
Data from five field experiments using labelled nitrogen fertilizer were used to determine the relative effects of soil nitrogen and fertilizer nitrogen on rice yield. Yield of grain was closely correlated with total aboveground nitrogen uptake (soil+fertilizer), less closely correlated with soil nitrogen uptake and not significantly correlated with fertilizer nitrogen uptake. When yield increase rather than yield was correlated with fertilizer nitrogen uptake, the correlation coefficient was statistically significant.Contribution from the Laboratory for Flooded Soils and Sediments, Agronomy Dept., Louisiana Agri. Exper. Sta., Louisiana State Univ., Baton Rouge, LA 70803, and Univ. of Florida, Agricultural Research and Education Center, Sanford, FL 32771.  相似文献   

15.
Li  Hong  Parent  Léon E.  Karam  Antoine  Tremblay  Catherine 《Plant and Soil》2003,251(1):23-36
It was hypothesized that soil N variability, and fertilization and cropping management affect potato (Solanum tuberosum L.) growth and fertilizer N efficiency. Following a 20-year sod breakup on a loamy soil in eastern Quebec, Canada (46°37 N, 71°47 W), we conducted a 3-year (1993–1995) study to investigate the effects of soil pool N and fertilizer N management on non-irrigated potato (cv. Superior) tuber yield, fertilizer N recovery (NRE), and residual N distribution in soils under humid, cool and acid pedoclimatic conditions. The fertilizer N treatments consisted of a control, side-dress at rates of 70, 105 and 140 kg ha–1, and split applications (at seeding and bloom) at rates of 70+70, 105+70 and 140+70 kg ha–1, respectively. Soil acidity was corrected with limestone following the plow down of the sod. Years of cropping, main effect of N treatment, and year and fertilizer N interaction were significant on total and marketable tuber yields and N uptake, which were significantly related to soil N, and root growth. Apparent NRE ranged between 29 and 70%, depending on years and N rates. Total tuber yield, N uptake, soil N use and NRE were significantly higher in the first (sod–potato) year, but decreased by 41.8, 22.7, 21.4 and 14.7%, respectively, in the third (sod–potato–potato–potato) year. Initial soil N pool was declined by 75% following the 3-year cropping. In 2–3 years, the side-dress N (140 kg ha–1) increased significantly tuber yields (11.4–19.8%) compared to the split N (70+70 kg ha–1). Higher split N had no effect on tuber yield and N uptake but increased residual N at harvest. Unused fertilizer N was strongly linked (R 2=0.98) to fertilizer N rates. Time factor and N treatment had significant effects (P<0.0001) on loss of N to below the root zone. Smaller scale rate and timing of split N need to be further determined. Increasing fertilizer N use efficiency could be expected with sod breakup and 75% of regional recommendation rate under humid, cool and acid pedoclimatic conditions.  相似文献   

16.
Understanding how to manage N inputs to identify the practices that maximize N recovery has been an organizing principle of agronomic research. Because growth in N fertilizer inputs is expected to continue in an ongoing effort to boost crop production over coming decades, understanding how to efficiently manage recovery of fertilizer N will be important going forward. Yet synthesis of published data that has traced the fate of 15N‐labeled fertilizer shows that less than half of the N taken up by crops is derived from current‐year N fertilizer. The source of the majority of N in crops is something other than current‐year fertilizer and the sources are not really known. This is true for maize (only 41% of N in crops was from current‐year N fertilizer), rice (32%), and small grains (37%). Recovery of organic fertilizer N (manure, green manure, compost, etc.) in crops is low (27%), though N recovery in subsequent years (10%) was greater than that for mineral fertilizers. Thus, while research on efficiency of N fertilizer use through improved rate, type, location, and timing is important, this research fails to directly address management of the majority of the N supplied to crops. It seems likely that the majority of non‐fertilizer N found in crops comes from turnover of soil and crop residue N. We encourage the research community to revisit the mental model that fertilizer is a replacement for N supply from turnover of soil organic N (SON) and consider a model in which N fertilizer augments ongoing SON turnover and makes an important longer term contribution to SON maintenance and turnover. Research focused on the efficient recovery of N current‐year fertilizer inputs neglects this potential role for building soil N and managing soil N turnover, which seems likely to be the most important source of crop N.  相似文献   

17.
土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦   总被引:35,自引:9,他引:26  
周顺利  张福锁  王兴仁 《生态学报》2001,21(11):1782-1789
不同氮肥用量下对冬小麦生育期间土壤硝态氮时空变化特征及土壤氮素表观盈亏量的研究结果表明,氮肥用量不同,硝态氮分布特征有差异,并且随着冬小麦的生长,其变化也不同。在冬小麦快速生长阶段,作物吸收可在一定深度的土层出现硝态氮亏缺区。由于灌溉的影响,土壤表层硝态氮向深层淋洗严重,即使在低氮肥水平,土壤深层仍可观察到硝态氮含量升高现象,存在淋出2m土体的可能性。并且氮肥用量越高,土壤硝态氮含量越高,硝酸盐向深层淋洗也越严重,淋出2m土体的可能性和也相应增大;在冬小麦生长前期(播种-拔节),即使在不施氮肥处理也有土壤氮素的表观盈余,随着施肥量的增加,在拔节-扬花也出现了土壤氮素表观盈余,而扬花后各个氮肥处理均出现土壤氮素的表观亏缺,氮肥用量越高,小麦一生中土壤表观氮盈余量越大,1m土体内平均最大盈余量达199.8kgN/hm^2。研究表明,土壤氮损失是盈余氮素的一个主要去向,而硝态氮淋洗是冬小麦生育期间土壤氮素损失的一个重要的途径。  相似文献   

18.
为明确长期氮磷钾肥配施下贵州典型黄壤玉米产量、氮磷钾肥增产效应及土壤养分的演变特征,利用国家贵阳黄壤肥力与肥效长期定位试验,研究氮磷钾平衡施肥(NPK)与缺素施肥(N、NK、NP、PK)对玉米相对产量、氮磷钾肥增产贡献率及土壤氮磷钾素养分可持续性指数等的影响.结果表明: 氮磷钾平衡施肥有显著增产效果,玉米相对产量均值为:NPK>NP>NK>PK>CK;氮、磷、钾肥增产贡献率和农学利用率均为氮肥>磷肥>钾肥,施肥依存度为氮、磷、钾肥配施>氮肥>磷肥>钾肥,但缺磷处理(NK)玉米相对产量以每年1.4%的速度极显著下降,磷肥贡献率和依存度则以每年2.3%和1.4%的速度极显著上升,最终磷肥对玉米生产的影响逐渐与氮肥持平;缺磷处理土壤pH值和有机质含量均最低,而缺氮处理则较高;施用化学磷肥可提高黄壤磷素可持续性指数,但氮肥和钾肥对黄壤氮素和钾素可持续性指数无显著影响.综上,平衡施肥是贵州典型黄壤地区玉米高产的重要保障,其中磷肥与氮肥同等重要,但长期单施化肥尤其是缺磷处理不利于黄壤养分的可持续利用.  相似文献   

19.
长期施肥对红壤稻田氮储量的影响   总被引:8,自引:0,他引:8  
陈安磊  谢小立  文菀玉  王卫  童成立 《生态学报》2010,30(18):5059-5065
稻田背景氮高是我国氮肥利用率低的主要原因之一,减少氮肥施用量对提高氮肥的农学利用率和缓解环境压力具有重要的意义。研究采用长期定位试验(19902006年)土壤全氮、稻谷产量等数据,分析施肥模式对稻田耕层土壤氮储量、氮肥农学利用率的影响,探讨在降低常规施用氮量的33.3%而不明显减产措施的可行性。结果表明:长期有机物质循环利用能显著提高耕层土壤全氮含量,氮储量与试验前相比平均提高了18.8%,仅施用化肥对土壤全氮含量没有显著影响,减量施肥处理(JS)对耕层土壤氮的积累效应一直优于仅施化肥的处理(NP、NPK)。17a的JS处理并没有降低稻谷产量,与常量NPK储量相比年际产量相对误差仅为3.2%,而输入N的农学利用率提高了12%。在半量稻草还田的条件下减少氮肥的施用量到180kg·hm-2是可行的,红壤稻田产量可维持在10t·hm-2左右。  相似文献   

20.
Z. Dou  R. H. Fox 《Plant and Soil》1995,177(2):235-247
The objective of this study was to determine if a re-calibrated version of the computer model NCSWAP (version 36) could accurately predict corn growth and soil N dynamics in conventionally tilled (CT) and no-till (NT) corn supplied with legume green manure or ammonium nitrate as N sources. We also attempted to ascertain the reasons for limitations in the model's ability to simulate corn growth and soil N dynamics found by our colleagues in a previous study and to propose potential improvements. The model was calibrated to accurately simulate total available N (N in plant above-ground biomass plus soil nitrate in the 0 to 45 cm profile) for a control and a fertilizer CT treatment in the 1992 growing season. To do so, input values defining the quantities of active soil organic N had to be reduced to 19% of the values proposed by the model developers and a solute transport factor defining the mobile vs. immobile fractions of soil nitrate adjusted from 0.8 to 0.2. The discrepancies between the proposed values and the lower values employed in this study might be due to the uncertainties in quantitatively describing soil N mineralization processes and the way they are handled in the model, as well as the lack of a component simulating macroporous-influenced water flow and solute transport in the model. With the current version, until one knows how to predict what these values are, the model needs to be re-calibrated for each experimental site and condition and thus is of limited value as a general model.With no further adjustment of input values, model validation success was mixed. The model accurately predicted total available N for treatments in the second year of the experiment that had the same N source and tillage as the treatments used for the calibration year but with the different weather and growing conditions. However, total available N was underpredicted where legume green manure was the N source and overpredicted with no-till cultivation. The model was accurate in simulating seasonal corn growth for nearly all the treatments, judged by nonsignificant mean difference (MD) values and highly significant correlation coefficients (r). Prediction of seasonal soil nitrate concentration was less accurate compared to total available N and corn growth variables. Potential improvements in the model's simulation of a no-till system as well as for predicting corn harvest yield and seasonal soil nitrate concentration where N deficiency occurs were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号