首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the quantitative genetic analysis of seed oil quality and quantity in six Arabidopsis thaliana recombinant inbred populations, in which the parent accessions were from diverse geographical origins, and were selected on the basis of variation for seed oil content and lipid composition. Although most of the biochemical steps involved in lipid biosynthesis are known and the key genes have been identified, the regulation of the processes that results in the final oil composition and total amount is not understood. By using physically anchored markers it was possible to compare results across populations. A total of 219 quantitative trait loci (QTLs) were identified, of which 81 were significant at P<0.001. Some of these colocalise with QTLs identified previously, but many novel QTLs were also identified. The results highlight the importance of studying traits in multiple populations, which will lead to a better understanding of the contribution that natural variation makes to the genetic architecture of a phenotype.  相似文献   

2.
Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) analysis was performed on the two segregating populations. Twenty-two flavonoid QTLs were detected that accounted for 11-64% of the observed trait variations, only one QTL being common to both RIL sets. Sixteen of these QTLs were confirmed and coarsely mapped using heterogeneous inbred families (HIFs). Three genes, namely TRANSPARENT TESTA (TT)7, TT15, and MYB12, were proposed to underlie their variations since the corresponding mutants and QTLs displayed similar specific flavonoid changes. Interestingly, most loci did not co-localize with any gene known to be involved in flavonoid metabolism. This latter result shows that novel functions have yet to be characterized and paves the way for their isolation.  相似文献   

3.
Seed size and composition are important traits in food crops and can be affected by nutrient availability in the soil. Phosphorus (P) is a non‐renewable, essential macronutrient, and P deficiency limits soybean (Glycine max) yield and quality. To investigate the associations of seed traits in low‐ and high‐P environments, soybean recombinant inbred lines (RILs) from a cross of cultivars Fiskeby III and Mandarin (Ottawa) were grown under contrasting P availability environments. Traits including individual seed weight, seed number, and intact mature pod weight were significantly affected by soil P levels and showed transgressive segregation among the RILs. Surprisingly, P treatments did not affect seed composition or weight, suggesting that soybean maintains sufficient P in seeds even in low‐P soil. Quantitative trait loci (QTLs) were detected for seed weight, intact pods, seed volume, and seed protein, with five significant QTLs identified in low‐P environments and one significant QTL found in the optimal‐P environment. Broad‐sense heritability estimates were 0.78 (individual seed weight), 0.90 (seed protein), 0.34 (seed oil), and 0.98 (seed number). The QTLs identified under low P point to genetic regions that may be useful to improve soybean performance under limiting P conditions.  相似文献   

4.
重庆大豆地方资源多样性评价及群体表型特点研究   总被引:1,自引:0,他引:1  
对收集于重庆市的103份大豆地方品种进行了表型遗传多样性分析,并利用主成分分析和聚类分析对其进行了群体表型特点的研究,研究结果表明,重庆地区大豆地方种质资源以灰色茸毛、黄粒、褐色脐居多,个体之间数量性状上存在较大变异。主成分分析以3个主成分反映了10个农艺性状的大部分信息,将主要农艺性状归纳成产量因子、生长势因子及籽粒因子。聚类分析将103份地方种质资源聚为6个类群, 同一地区的大部分地方品种表现较为相似,少部分地方品种差异大,品种类群间的表型分化与地理分布既有一定的联系又不绝对相关。利用这些种质选配育种亲本应关注各类群间性状差异作选择,而不能仅关注地理来源选择。  相似文献   

5.
Round soybean seeds are sought-after for food-type soybean. Also the genetic control of seed geometry is of scientific interest. The objectives of this study were to estimate heritability and map quantitative trait loci (QTLs) responsible for seed shape traits. Three densely mapped recombinant inbred populations each with 192 segregants were used, Minsoy × Archer, Minsoy × Noir1, and Noir1 × Archer. A two rep two location experiment was conducted in Los Andes, Chile, and East Lansing, MI, USA. Seed height (SH), width (SW), length (SL), and seed volume (SV) as width × height × length were measured to determine seed shape. Heritability was estimated by variance component analysis. A total of 19 significant QTLs (LOD ≥ 3.7) in ten linkage groups (LG) were detected for all the traits. Only one QTL was stable across populations and environments and six were stable in at least two populations in both environments. The amount of phenotypic variation explained by a single QTL varied from 7.5% for SH, to 18.5% for SW and at least 30% of the genetic variation for the traits is controlled by four QTL or less. All traits were highly correlated with each other in all populations with values ranging from 0.5 to 0.9, except for SL and SW that were not significantly correlated or had a low correlation in all populations. Narrow sense heritabilities for all traits ranged from 0.42 to 0.88. We note that LG u9, u11, and u14 are hot points of the genome for QTLs for various traits. The number and genomic distribution of the QTLs confirms the complex genetic control of seed shape. Transgressive segregation was observed for all traits suggesting that careful selection of parents with similar phenotypes but different genotypes using molecular markers can result in desirable transgressive segregants.  相似文献   

6.
Soybean seed and pod traits are important yield components. Selection for high yield style in seed and pod along with agronomic traits is a goal of many soybean breeders. The intention of this study was to identify quantitative trait loci (QTL) underlying seed and pod traits in soybean among eleven environments in China. 147 recombinant inbred lines were advanced through single-seed-descent method. The population was derived from a cross between Charleston (an American high yield soybean cultivar) and DongNong594 (a Chinese high yield soybean cultivar). A total of 157 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. The phenotypic data of seed and pod traits [number of one-seed pod, number of two-seed pod, number of three-seed pod, number of four-seed pod, number of (two plus three)-seed pod, number of (three plus four)-seed pod, seed weight per plant, number of pod per plant] were recorded in eleven environments. In the analysis of single environment, fourteen main effect QTLs were identified. In the conjoint analysis of multiple environments, twenty-four additive QTLs were identified, and additive QTLs by environments interactions (AE) were evaluated and analyzed at the same time among eleven environments; twenty-three pairs of epistatic QTLs were identified, and epistasis (additive by additive) by environments interactions (AAE) were also analyzed and evaluated among eleven environments. Comparing the results of identification between single environment mapping and multiple environments conjoint mapping, three main effect QTLs with positive additive values and another three main effect QTLs with negative additive values, had no interactions with all environments, supported that these QTLs could be used in molecular assistant breeding in the future. These different effect QTLs could supply a good foundation to the gene clone and molecular asisstant breeding of soybean seed and pod traits.  相似文献   

7.
Ubayasena L  Bett K  Tar'an B  Warkentin T 《Génome》2011,54(4):261-272
Visual quality of field pea (Pisum sativum L.) is one of the most important determinants of the market value of the harvested crop. Seed coat color, seed shape, and seed dimpling are the major components of visual seed quality of field pea and are considered as important breeding objectives. The objectives of this research were to study the genetics and to identify quantitative trait loci (QTLs) associated with seed coat color, seed shape, and seed dimpling of green and yellow field peas. Two recombinant inbred line populations (RILs) consisting of 120 and 90 lines of F(5)-derived F(7) (F(5:7)) yellow pea (P. sativum 'Alfetta' × P. sativum 'CDC Bronco') and green pea (P. sativum 'Orb' × P. sativum 'CDC Striker'), respectively, were evaluated over two years at two locations in Saskatchewan, Canada. Quantitative inheritance with polygenic control and transgressive segregation were observed for all visual quality traits studied. All 90 RILs of the green pea population and 92 selected RILs from the yellow pea population were screened using AFLP and SSR markers and two linkage maps were developed. Nine QTLs controlling yellow seed lightness, 3 for yellow seed greenness, 15 for seed shape, and 9 for seed dimpling were detected. Among them, five QTLs located on LG II, LG IV, and LG VII were consistent in at least two environments. The QTLs and their associated markers will be useful tools to assist pea breeding programs attempting to pyramid positive alleles for the traits.  相似文献   

8.
QTL analysis of root traits as related to phosphorus efficiency in soybean   总被引:3,自引:0,他引:3  

Background and Aims

Low phosphorus (P) availability is a major constraint to soybean growth and production, especially in tropical and subtropical areas. Root traits have been shown to play critical roles in P efficiency in crops. Identification of the quantitative trait loci (QTLs) conferring superior root systems could significantly enhance genetic improvement in soybean P efficiency.

Methods

A population of 106 F9 recombinant inbred lines (RILs) derived from a cross between BD2 and BX10, which contrast in both P efficiency and root architecture, was used for mapping and QTL analysis. Twelve traits were examined in acid soils. A linkage map was constructed using 296 simple sequence repeat (SSR) markers with the Kosambi function, and the QTLs associated with these traits were detected by composite interval mapping and multiple-QTL mapping.

Key Results

The first soybean genetic map based on field data from parental genotypes contrasting both in P efficiency and root architecture was constructed. Thirty-one putative QTLs were detected on five linkage groups, with corresponding contribution ratios of 9·1–31·1 %. Thirteen putative QTLs were found for root traits, five for P content, five for biomass and five for yield traits. Three clusters of QTLs associated with the traits for root and P efficiency at low P were located on the B1 linkage group close to SSR markers Satt519 and Satt519-Sat_128, and on the D2 group close to Satt458; and one cluster was on the B1 linkage group close to Satt519 at high P.

Conclusions

Most root traits in soybean were conditioned by more than two minor QTLs. The region closer to Satt519 on the B1 linkage group might have great potential for future genetic improvement for soybean P efficiency through root selection.  相似文献   

9.
Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals. Here, we quantify the range of variation in floral UV patterning (i.e. UV ‘bulls‐eye nectar guides) among crop and wild accessions of Brassica rapa. We then use experimental crosses to examine the genetic architecture, candidate loci and biochemical underpinnings of this patterning as well as phenotypic manipulations to test the ecological impact. We find qualitative variation in UV patterning between wild (commonly lacking UV patterns) and crop (commonly exhibiting UV patterns) accessions. Similar to the majority of crops, recombinant inbred lines (RILs) derived from an oilseed crop × WI fast‐plant® cross exhibit UV patterns, the size of which varies extensively among genotypes. In RILs, we further observe strong statistical‐genetic and QTL correlations within petal morphological traits and within measurements of petal UV patterning; however, correlations between morphology and UV patterning are weak or nonsignificant, suggesting that UV patterning is regulated and may evolve independently of overall petal size. HPLC analyses reveal a high concentration of sinapoyl glucose in UV‐absorbing petal regions, which, in concert with physical locations of UV‐trait QTLs, suggest a regulatory and structural gene as candidates underlying observed quantitative variation. Finally, insects prefer flowers with UV bulls‐eye patterns over those that lack patterns, validating the importance of UV patterning in pollen‐limited populations of B. rapa.  相似文献   

10.
One hundred and forty-three F2:7 recombinant inbred lines (RILs) developed from the cross of soybean cultivars 'Charleston' and 'Dongnong 594' were analyzed for the quantitative trait loci (QTLs) underlying protein or oil content at 6 different developmental stages by composite interval mapping with a mixed genetic model. The genotype x environment (GxE) interactions of the QTLs were also evaluated. Nineteen (2004) and 33 (2005) unconditional QTLs underlying seed protein or oil content at the different developmental stages were mapped onto 8 and 9 linkage groups, respectively. The proportion of phenotypic variation explained by these QTLs ranged from 6.26% to 30.52% and from 5.38% to 28.47%, respectively. Fourteen (2004) and 21 (2005) conditional QTLs underlying seed protein or oil content were mapped onto 5 and 8 linkage groups, respectively. The proportion of phenotypic variation explained by these QTLs ranged from 2.97% to 29.68% and from 5.42% to 31.96%, respectively. The numbers and types of QTLs and the genetic effect for the two traits were different at each developmental stage. However, several genomic regions that simultaneously control the development of both traits were detected. The genetic effect on protein content and oil content was opposite for loci in the marker interval Satt335-SSatt334, reflecting a negative correlation of protein content and oil content. A G x E interaction effect of some QTLs underlying protein or oil content at different growth periods was observed.  相似文献   

11.
Postpollination nonrandom mating among compatible mates is a widespread phenomenon in plants and is genetically undefined. In this study, we used the recombinant inbred line (RIL) population between Landsberg erecta and Columbia (Col) accessions of Arabidopsis (Arabidopsis thaliana) to define the genetic architecture underlying both female- and male-mediated nonrandom mating traits. To map the genetic loci responsible for male-mediated nonrandom mating, we performed mixed pollinations with Col and RIL pollen on Col pistils. To map the genetic loci responsible for female-mediated nonrandom mating, we performed mixed pollinations with Col and Landsberg erecta pollen on RIL pistils. With these data, we performed composite interval mapping to identify two quantitative trait loci (QTLs) that control male-mediated nonrandom mating. We detected epistatic interactions between these two loci. We also explored female- and male-mediated traits involved in seed yield in mixed pollinations. We detected three female QTLs and one male QTL involved in directing seed number per fruit. To our knowledge, the results of these experiments represent the first time the female and male components of seed yield and nonrandom mating have been separately mapped.  相似文献   

12.
种子耐储藏特性是粮食作物的特殊农艺性状之一, 耐储藏性能对种子生产和种质资源保存有重要意义。以粳型超级稻龙稻5 (LD5)和高产籼稻中优早8 (ZYZ8)杂交衍生的重组自交系(RILs)群体(共180个株系)为实验材料, 自然高温高湿条件下放置1年、2年和3年后, 对不同储藏时段种子发芽率进行比较, 并利用223个分子标记的遗传图谱进行动态QTL鉴定。结果表明, 不同储藏时段龙稻5的发芽率均显著低于中优早8, 株系间耐储性存在较大差异; 不同储藏时段发芽率显著相关, 相邻存储时段发芽率关系紧密。共检测到17个耐储性相关的QTLs, 3个老化时段分别检测到5、4和3个, 检测到5个动态条件QTLs, 单一QTL解释5.60%-32.76%的表型变异, 加性效应在-16.78%-16.95%范围内。主效QTL簇qSSC2qSSC6qSSC7qSSC8能调控不同储藏时段的发芽率, qSSC6具有明显降低发芽率的效应。共检测到26对上位性互作位点, 主效QTL qSS1qSS4参与上位性互作, 这表明上位性互作是调控耐储藏性状的重要遗传组成。研究结果为水稻(Oryza sativa)耐储性相关QTL的精细定位奠定基础, 同时丰富了耐储性分子标记辅助选择育种的基因资源。  相似文献   

13.
Seed weight and seed size both are quantitative traits and have been considered as important components of grain yield, thus identification of quantitative trait loci (QTL) for seed traits in lentil (Lens culinaris) would be beneficial for the improvement of grain yield. Hence the main objective of this study was to identify QTLs for seed traits using an intraspecific mapping population derived from a cross between L. culinaris cv. Precoz (seed weight-5.1g, seed size-5.7mm) and L. culinaris cv. L830 (seed weight-2.2g, seed size-4mm) comprising 126 F8-RILs. For this, two microsatellite genomic libraries enriched for (GA/CT) and (GAA/CTT) motif were constructed which resulted in the development of 501 new genomic SSR markers. Six hundred forty seven SSR markers (including 146 previously published) were screened for parental polymorphism and 219 (33.8%) were found to be polymorphic among the parents. Of these 216 were mapped on seven linkage groups at LOD4.0 spanning 1183.7cM with an average marker density of 5.48cM. Phenotypic data from the RILs was used to identify QTLs for the seed weight and seed size traits by single marker analysis (SMA) followed by composite interval mapping (CIM) which resulted in one QTL each for the 2 traits (qSW and qSS) that were co-localized on LG4 and explained 48.4% and 27.5% of phenotypic variance respectively. The current study would serve as a strong foundation for further validation and fine mapping for utilization in lentil breeding programs.  相似文献   

14.
A major objective for geneticists is to decipher genetic architecture of traits associated with agronomic importance. However, a majority of such traits are complex, and their genetic dissection has been traditionally hampered not only by the number of minor-effect quantitative trait loci (QTL) but also by genome-wide interacting loci with little or no individual effect. Soybean (Glycine max [L.] Merr.) seed isoflavonoids display a broad range of variation, even in genetically stabilized lines that grow in a fixed environment, because their synthesis and accumulation are affected by many biotic and abiotic factors. Due to this complexity, isoflavone QTL mapping has often produced conflicting results especially with variable growing conditions. Herein, we comparatively mapped soybean seed isoflavones genistein, daidzein, and glycitein by using several of the most commonly used mapping approaches: interval mapping, composite interval mapping, multiple interval mapping and a mixed-model based composite interval mapping. In total, 26 QTLs, including many novel regions, were found bearing additive main effects in a population of RILs derived from the cross between Essex and PI 437654. Our comparative approach demonstrates that statistical mapping methodologies are crucial for QTL discovery in complex traits. Despite a previous understanding of the influence of additive QTL on isoflavone production, the role of epistasis is not well established. Results indicate that epistasis, although largely dependent on the environment, is a very important genetic component underlying seed isoflavone content, and suggest epistasis as a key factor causing the observed phenotypic variability of these traits in diverse environments.  相似文献   

15.
种子耐储藏特性是粮食作物的特殊农艺性状之一, 耐储藏性能对种子生产和种质资源保存有重要意义。以粳型超级稻龙稻5 (LD5)和高产籼稻中优早8 (ZYZ8)杂交衍生的重组自交系(RILs)群体(共180个株系)为实验材料, 自然高温高湿条件下放置1年、2年和3年后, 对不同储藏时段种子发芽率进行比较, 并利用223个分子标记的遗传图谱进行动态QTL鉴定。结果表明, 不同储藏时段龙稻5的发芽率均显著低于中优早8, 株系间耐储性存在较大差异; 不同储藏时段发芽率显著相关, 相邻存储时段发芽率关系紧密。共检测到17个耐储性相关的QTLs, 3个老化时段分别检测到5、4和3个, 检测到5个动态条件QTLs, 单一QTL解释5.60%-32.76%的表型变异, 加性效应在-16.78%-16.95%范围内。主效QTL簇qSSC2qSSC6qSSC7qSSC8能调控不同储藏时段的发芽率, qSSC6具有明显降低发芽率的效应。共检测到26对上位性互作位点, 主效QTL qSS1qSS4参与上位性互作, 这表明上位性互作是调控耐储藏性状的重要遗传组成。研究结果为水稻(Oryza sativa)耐储性相关QTL的精细定位奠定基础, 同时丰富了耐储性分子标记辅助选择育种的基因资源。  相似文献   

16.
In many legume crops, especially in forage legumes, aerial morphogenesis defined as growth and development of plant organs, is an essential trait as it determines plant and seed biomass as well as forage quality (protein concentration, dry matter digestibility). Medicago truncatula is a model species for legume crops. A set of 29 accessions of M. truncatula was evaluated for aerial morphogenetic traits. A recombinant inbred lines (RILs) mapping population was used for analysing quantitative variation in aerial morphogenetic traits and QTL detection. Genes described to be involved in aerial morphogenetic traits in other species were mapped to analyse co-location between QTLs and genes. A large variation was found for flowering date, morphology and dynamics of branch elongation among the 29 accessions and within the RILs population. Flowering date was negatively correlated to main stem and branch length. QTLs were detected for all traits, and each QTL explained from 5.2 to 59.2% of the phenotypic variation. A QTL explaining a large part of genetic variation for flowering date and branch growth was found on chromosome 7. The other chromosomes were also involved in the variation detected in several traits. Mapping of candidate genes indicates a co-location between a homologue of Constans gene or a flowering locus T (FT) gene and the QTL of flowering date on chromosome 7. Other candidate genes for several QTLs are described. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Plant architecture is a key factor for high productivity maize because ideal plant architecture with an erect leaf angle and optimum leaf orientation value allow for more efficient light capture during photosynthesis and better wind circulation under dense planting conditions. To extend our understanding of the genetic mechanisms involved in leaf-related traits, three connected recombination inbred line (RIL) populations including 538 RILs were genotyped by genotyping-by-sequencing (GBS) method and phenotyped for the leaf angle and related traits in six environments. We conducted single population quantitative trait locus (QTL) mapping and joint linkage analysis based on high-density recombination bin maps constructed from GBS genotype data. A total of 45 QTLs with phenotypic effects ranging from 1.2% to 29.2% were detected for four leaf architecture traits by using joint linkage mapping across the three populations. All the QTLs identified for each trait could explain approximately 60% of the phenotypic variance. Four QTLs were located on small genomic regions where candidate genes were found. Genomic predictions from a genomic best linear unbiased prediction (GBLUP) model explained 45±9% to 68±8% of the variation in the remaining RILs for the four traits. These results extend our understanding of the genetics of leaf traits and can be used in genomic prediction to accelerate plant architecture improvement.  相似文献   

18.
To understand the types of gene action controlling seven quantitative traits in rice, QTL mapping was performed to dissect the main effect (M-QTLs) and digenic epistatic (E-QTLs) QTLs responsible for the trait performance of 254 recombinant inbred lines (RILs) of "Lemont/Teqing", and two testcross (TC) F(1) populations derived from these RILs. The correlation analyses reveal a general pattern, i.e. trait heritability in the RILs was negatively correlated to trait heterosis in the TC hybrids. A large number of M-QTLs and E-QTLs affecting seven traits, including heading date (HD), plant height (PH), flag leaf length (FLL), flag leaf width (FLW), panicle length (PL), spikelet number per panicle (SN) and spikelet fertility (SF), were identified and could be classified into two predominant groups, additive QTLs detected primarily in the RILs, and overdominant QTLs identified exclusively in the TC populations. There is little overlap between QTLs identified in the RILs and in the TC populations. This result implied that additive gene action is largely independent from non-additive gene action in the genetic control of quantitative traits of rice. The detected E-QTLs collectively explained a much greater portion of the total phenotypic variation than the M-QTLs, supporting prior findings that epistasis has played an important role in the genetic control of quantitative traits in rice. The implications of these results to the development of inbred and hybrid cultivars were discussed.  相似文献   

19.
The extreme climate of the Canadian Prairies poses a major chal enge to improve yield. Although it is possible to breed for yield per se, focusing on yield-related traits could be advantageous because of their simpler genetic architecture. The Canadian flax core col ection of 390 accessions was genotyped with 464 simple sequence repeat markers, and phenotypic data for nine agronomic traits including yield, bol s per area, 1,000 seed weight, seeds per bol , start of flowering, end of flowering, plant height, plant branching, and lodging col ected from up to eight environments was used for association mapping. Based on a mixed model (principal component analysis (PCA) t kinship matrix (K)), 12 significant marker-trait associations for six agronomic traits were identi-fied. Most of the associations were stable across environments as revealed by multivariate analyses. Statistical simulation for five markers associated with 1000 seed weight indicated that the favorable al eles have additive effects. None of the modern cultivars carried the five favorable al eles and the maximum number of four observed in any accessions was mostly in&amp;nbsp;breeding lines. Our results confirmed the complex genetic architecture of yield-related traits and the inherent difficulties associated with their identification while il ustrating the potential for improvement through marker-assisted selection.  相似文献   

20.
A QTL analysis was performed to determine the genetic basis of 13 horticultural traits conditioning yield in pepper (Capsicum annuum). The mapping population was a large population of 297 recombinant inbred lines (RIL) originating from a cross between the large-fruited bell pepper cultivar ‘Yolo Wonder’ and the small-fruited chilli pepper ‘Criollo de Morelos 334’. A total of 76 QTLs were detected for 13 fruit and plant traits, grouped in 28 chromosome regions. These QTLs explained together between 7% (internode growth time) and 91% (fruit diameter) of the phenotypic variation. The QTL analysis was also performed on two subsets of 141 and 93 RILs sampled using the MapPop software. The smaller populations allowed for the detection of a reduced set of QTLs and reduced the overall percentage of trait variation explained by QTLs. The frequency of false positives as well as the individual effect of QTLs increased in reduced population sets as a result of reduced sampling. The results from the QTL analysis permitted an overall glance over the genetic architecture of traits considered by breeders for selection. Colinearities between clusters of QTLs controlling fruit traits and/or plant development in distinct pepper species and in related solanaceous crop species (tomato and eggplant) suggests that shared mechanisms control the shape and growth of different organs throughout these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号