首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
2.
Seedlings of cultivated rice variety ADT43 was investigated after challenging with two different abiotic (drought and salinity) and biotic (sheath blight and bacterial leaf blight pathogens) stresses. Salinity and drought stress reduced the growth of seedlings, mainly the higher conditions (100 mM NaCl and 10?days of drought, respectively). Increased level of MDA content was observed in biotic and abiotic-stress treated seedlings. The highest H2O2 content was observed under salinity-stressed seedlings and lower level observed under biotic stress. Superoxide dismutase activity showed a gradual decrease in all stress conditions compared to control. Salinity stress resulted in highest activity of catalase compared to biotic stress. The peroxidase activity of the seedlings was found to be increased under salt and drought stress conditions and the activity decreased under biotic stress. Drought stress resulted in induced expression of POC1 gene whereas the biotic stress showed lower expression level. Suppression of the rice peroxidase would have been the mechanism of overcoming the intrinsic defence in rice by these pathogens.  相似文献   

3.

Aims

The present study was carried out to screen the phylloplane bacteria from tea for antagonism against grey blight caused by Pestalotiopsis theae and blister bight caused by Exobasidium vexans and to further evaluate the efficient isolates for disease control potential under field condition.

Methods and Results

A total of 316 morphologically different phylloplane bacteria were isolated. Among the antagonists, the isolates designated as BMO‐075, BMO‐111 and BMO‐147 exhibited maximum inhibitory activity against both the pathogens under in vitro conditions and hence were selected for further evaluation under microplot field trial. Foliar application of 36‐h‐old culture of BMO‐111 (1 × 108 colony‐forming units ml?1) significantly reduced the blister blight disease incidence than the other isolates. The culture of BMO‐111 as well as its culture filtrate effectively inhibited the mycelial growth of various fungal plant pathogens. The isolate BMO‐111 was identified as Ochrobactrum anthropi based on the morphological and 16S rDNA sequence analyses.

Conclusions

It could be concluded that the biocontrol agent O. anthropi BMO‐111 was effective against blister blight disease of tea.

Significance and Impact of the Study

Further study is required to demonstrate the mechanism of its action and formulation for the biocontrol potential against blister blight disease of tea.  相似文献   

4.
5.
Effects of elicitation with heavy metals such as copper, cadmium, chromium (abiotic elicitation) and supplementation of CaCl2 on production of dipyranocoumarins (inophyllums) in suspension cultures of leaf and stem callus of Calophyllum inophyllum were studied. The optimum timing for elicitor introduction was found to be the 10th day after initiating the suspension cultures. Cadmium as abiotic elicitor in suspension cultures of stem callus was found best to elicit maximum production of inophyllums A, C, and calophyllolide while cadmium in suspension cultures of leaf callus was found best for eliciting maximum production of inophyllums B and P. Inophyllum D was the only dipyranocoumarin whose highest production was achieved when 1.0 mM chromium was used as abiotic elicitor in suspension cultures of stem callus. Out of the three abiotic elicitors used, none could result biomass growth. Only incorporation of CaCl2 in suspension cultures resulted biomass growth. A maximum of 35.26-fold biomass growth was achieved when suspension cultures of stem callus were incorporated with 2.0 mM CaCl2. CaCl2 was noted to have no positive influence on production of most of the dipyranocoumarins under study.  相似文献   

6.
7.
Pathogenic infection and the oxidative defences in plant apoplast   总被引:4,自引:0,他引:4  
Summary The structural and functional continuum of the plant apoplast is the first site of contact with a pathogen and plays a crucial role in initiation and coordination of many defence responses. In this paper, we present an overview of the involvement of the plant apoplast in plant-pathogen interactions. The process of infection of French bean (Phaseolus vulgaris L.) plants byColletotrichum lindemuthianum is analysed. The ultrastructural features of plant defence responses to fungal infection are then compared with those observed in plants or cell suspensions treated with various elicitors. Changes in cell walls and in whole plant cells responding to infection seem to be highly similar in all systems used. Model systems of French bean and white lupin (Lupinus albus L.) are then utilised to provide some biochemical characteristics of oxidative reactions in the apoplast evoked by elicitor treatment. The species specificity of various mechanisms generating reactive oxygen species is discussed, and some details of pH-dependent H2O2-generating activity of peroxidases are demonstrated. As its exocellular nature is an important feature of the oxidative burst, the major consequence of this event, i.e., the oxidative cross-linking of wall components during the papilla formation and strengthening of the walls, is analysed. Finally, the possible involvement of other wall-associated and developmentally regulated H2O2-generating mechanisms, like amine and oxalate oxidases, in plant defence is demonstrated. It is concluded that under stress conditions, such apoplastic mechanisms might be employed to increase plants' chances of survival.Abbreviations HR hypersensitive response - IWF intercellular washing fluid - OxO oxalate oxidase - ROS reactive oxygen species - YE elicitor preparation from yeast cell walls  相似文献   

8.
9.
Transformed roots of V. locusta (Valerianaceae) were obtained through transformation with Agrobacterium rhizogenes strains A4 and ATCC 15834. Six known valepotriates, including diavaltrate, acevaltrate, didrovaltrate, IVHD-valtrate, isovaltrate, and valtrate were the major components detected. An LC/PDA method was used in the quantitation of these compounds in the transformed root extracts. The treatment of transformed roots with biotic (methyl jasmonate, salicylic acid, yeast extract) and abiotic elicitors (CuSO4, HgCl2, CaCl2) was used as a strategy to improve the production of valepotriates. Methyl jasmonate appeared to be the best elicitor for valepotriate production, yielding up to a 7-fold increase in total valepotriate content, while HgCl2 had the most deteriorating effect on the production of valepotriates. Salicylic acid-, CuSO4- and CaCl2-treated roots showed significant increases in the production at a short duration of exposure; the production decreased as the time of elicitation increased. The highest total valepotriate content achieved in this study was 139 mg g–1 DW (13.9%) from transformed roots treated for 10 days with 100 M methyl jasmonate. This amount was >50- and 12-fold higher than the values reported from the cultivated plants and callus culture, respectively, and was comparable to the amount reported from the high valepotriate-producing species Valeriana thalictroides Graebn. The production of diavaltrate, acevaltrate, didrovaltrate, and isovaltrate were significantly higher, while the production of IVHD-valtrate was lower and that of valtrate was similar to that of the control. The IVAL/VAL production ratio was affected by the treatment with methyl jasmonate but not by other elicitors. The use of transformed root cultures in combination with the treatment with biotic and abiotic elicitors offer a new route for high valepotriate production.  相似文献   

10.
In this study, the effect of endophytic fungus Piriformospora indica on Rhizoctonia solani AG1-IA, causal agent of sheath blight disease, was investigated. In addition, plant defence responses activated in P. indica-inoculated rice plants were analysed. Two-week-old seedlings were inoculated by dipping their roots in P. indica chlamydospore suspension and transferred to pots containing sterilized soil. After two weeks, the seedlings pre-inoculated with P. indica were inoculated with R. solani. Statistical analysis of biological indicators showed that application of P. indica increased both fresh and dry weight of rice shoots and roots, compared to those of uninoculated healthy controls and the samples only inoculated with R. solani. Accumulation of hydrogen peroxide (H2O2) and activity of antioxidants such as superoxide dismutase (SOD) and guaiacol peroxidase (GPX) in plants inoculated with P. indica, R. solani, and P. indica-R. solani were investigated. The obtained results revealed that P. indica not only increased the plant biomass, but also delayed the infection process of R. solani and decreased sheath blight severity. Decreased severity of the disease was associated with decreased levels of H2O2 and increased SOD activity. Considering the necessity of reducing fungicide application, using P. indica in seedling bed before transplantation to the field could be a novel and effective method to increase rice production and decrease sheath blight progress.  相似文献   

11.
An extract of frozen and thawed soybean (Glycine max L. Merr. cv. Wayne) stems is active, in wounded soybean cotyledons, as a heat-labile elicitor of phytoalexins. The elicitor activity of the extract is destroyed by heating to 95°C for 10 minutes. The fraction that contains heat-labile elicitor activity releases heat-stable elicitor-active molecules from purified soybean cell walls. Heat-labile elicitor activity voids a Bio-Gel P-6 column and can be absorbed onto and eluted from a DEAE Sephadex ion exchange column. Using the cotyledon phytoalexin elicitor assay, maximum heatlabile elicitor activity was obtained when soybean stems were extracted with acetate buffer at pH 6.0. Addition of 1 millimolar CaCl2 increased apparent heat-labile elicitor activity. The heat-labile elicitor stimulated maximum phytoalexin accumulation when applied to cotyledons immediately after the cotyledons were cut. Partially purified stem extracts lost heat-labile elicitor activity during storage for several days at 3°C. The possible role of a heat-labile elicitor in stimulation of phytoalexin accumulation by both abiotic and biotic elicitors is discussed.  相似文献   

12.
Abstract

Tea, Camellia sinensis (L.) O. Kuntze, an agro-based industry, is considered as one of the prime sector of exporting resources and thus considered as “cash-crop”. Earlier report shows that tea is native to eastern and northern India, which was cultivated and consumed there since long back. Presently, more scientific reports confirmed the health-benefit traits of tea and awareness increased to a greater extent and in this regard, tea has gained its best worldwide popularity. Darjeeling Tea attained its highest acceptance globally for its pre-eminence in flavour, colour and taste and thus crop improvement is the prime interest to the Indian Scientific Community. Blister blight disease, a common disorder of tea bushes (Exobasidium vexans, a Basidiomycetes fungus) causes drastic damage of tea plantation. Depending on quality production, two common cultivars were released by TRA, Jorhat, Assam viz. Bannockburn – 157 (B-157) and Ambei Valai - 2 (AV-2), of which B-157 is susceptible to the Blister Blight and AV-2 is fairly resistant cultivar. Some biochemical considerations between the two cultivars have been made here for understanding the biochemical reasons behind the resistant characteristics. Plant secondary metabolites, like total phenol, proanthocynadin, total soluble protein provide defending feature against disease onset. AV-2 cultivar shows advantage over B-157 in these regard. Depending on band intensity analysis of native gels, acid phosphatase, catechol oxidase, peroxidase and superoxide dismutase occur in superior amount in AV-2 cultivar than that of B-157. The specific role of these enzymes in blister blight disease compatibility of two cultivars studied has been discussed.  相似文献   

13.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. In order to create novel mechanisms for fire blight resistance in pear, we have generated transgenic pears expressing the elicitor harpin Nea from Erwinia amylovora under the control of the constitutive promoter CaMV35S. The transient expression of hrpN Ea in pear cells did not provoke any apparent damage. Therefore, stable constitutive expression of hrpN Ea was studied in seventeen transgenic clones of the very susceptible cultivar “Passe Crassane.” Most transgenic clones displayed significant reduction of susceptibility to fire blight in vitro when inoculated by E. amylovora, which was positively correlated to their degree of expression of the transgene hrpN Ea . These results indicate that ectopic expression of a bacterial elicitor such as harpin Nea is a promising way to improve pear resistance to fire blight.  相似文献   

14.
Four antagonistic bacterial isolates, Bacillus subtilis, Bacillus sp., Pseudomonas corrugata 1 and P.-corrugata 2, isolated from the rhizosphere of tea plants growing in different geographical locations in India, were tested as microbial inoculants for hardening of tissue-cultured tea plants raised in the laboratory prior to the transfer to open land. Bacterial inoculations resulted in enhanced survival (up to 100, 96, and 88%), as against 50, 52, and 36% survival observed in the corresponding control plants, in rainy, winter and summer seasons, respectively. Rhizoplane and rhizosphere soil analyses showed that the major biotic factor responsible for mortality following the transfer of tissue culture raised plants to soil was fungal attack (Fusarium oxysporum). Bacterial inoculations also resulted in plant growth promotion of tissue culture as well as seed raised plants of tea.  相似文献   

15.
The in vitro antifungal properties of chitosan and its role in protection of tomato from early blight disease were evaluated. Chitosan inhibited the radial and submerged growth of Alternaria solani at 1?mg/ml and control tomato plants from blight pathogen. Chitosan was able to induce the level of chitinase activity and new isoforms of chitinase, resulting in the reduction of early blight disease severity in tomato leaves. These results suggested the role of chitosan in activation of defence responses as well as protecting tomato plants from A. solani infection.  相似文献   

16.
Acremonium strictum elicitor subtilisin (AsES) is a 34-kDa serine-protease secreted by the strawberry fungal pathogen A. strictum. On AsES perception, a set of defence reactions is induced, both locally and systemically, in a wide variety of plant species and against pathogens of alternative lifestyles. However, it is not clear whether AsES proteolytic activity is required for triggering a defence response or if the protein itself acts as an elicitor. To investigate the necessity of the protease activity to activate the defence response, AsES coding sequences of the wild-type gene and a mutant on the active site (S226A) were cloned and expressed in Escherichia coli. Our data show that pretreatment of Arabidopsis plants with inactive proteins, i.e. inhibited with phenylmethylsulphonyl fluoride (PMSF) and mutant, resulted in an increased systemic resistance to Botrytis cinerea and expression of defence-related genes in a temporal manner that mimics the effect already reported for the native AsES protein. The data presented in this study indicate that the defence-eliciting property exhibited by AsES is not associated with its proteolytic activity. Moreover, the enhanced expression of some immune marker genes, seedling growth inhibition and the involvement of the co-receptor BAK1 observed in plants treated with AsES suggests that AsES is being recognized as a pathogen-associated molecular pattern by a leucine-rich repeat receptor. The understanding of the mechanism of action of AsES will contribute to the development of new breeding strategies to confer durable resistance in plants.  相似文献   

17.
The in vitro antifungal properties of chitosan and its role in protection of tomato from early blight disease were evaluated. Chitosan inhibited the radial and submerged growth of Alternaria solani at 1 mg/ml, and controls tomato plants from blight pathogen. Chitosan induces the level of chitinase activity and new isoforms of chitinase resulting in the reduction of early blight disease severity in tomato leaves. These results suggested the role of chitosan in activation of defence responses as well as protecting tomato plants from A. solani infection.  相似文献   

18.
Bacillus vallismortis strain EXTN-1 is a proven biotic elicitor of systemic resistance in many crops against various pathogens. l-Alanine (Ala) was tested in cucumber as a chemical elicitor of induced systemic resistance (ISR) against Colletotrichum orbiculare. In the greenhouse, both Ala and EXTN-1 induced significant levels of disease suppression in cucumber against anthracnose. When cucumber plants were treated with EXTN-1 and Ala together, augmentative disease suppression was observed. Experiments with transgenic tobacco plants carrying pathogenesis-related genes fused with the β-glucuronidase (GUS) reported gene (PR-1a::GUS & PDF 1.2::GUS) showed an enhanced activation of both PR-1a and PDF 1.2 genes upon combined treatment with Ala and EXTN-1. RT-PCR analysis with transgenic (PR-1a or PDF 1.2 over expressing) Arabidopsis plant showed more enhanced expression of resistance genes PR-1a and PDF 1.2 upon combined treatment with Ala and EXTN-1 than either alone. An augmentative ISR effect, when the bacterial elicitor and chemical elicitor were combined together, was confirmed.  相似文献   

19.
Ankyrin repeat‐containing proteins comprise a large family whose members have been shown to play important roles in various aspects of biological processes in plant growth and development as well as in responses to biotic and abiotic stresses. We previously identified a rice gene, OsBIANK1, encoding an ankyrin repeat‐containing protein and found that expression of OsBIANK1 can be induced by defence signalling molecules and by infection of Magnaporthe oryzae, the causal agent of blast disease. To better understand the possible function of OsBIANK1 in disease resistance, we generated transgenic Arabidopsis plants that constitutively overexpress the OsBIANK1 gene. Results from disease assays revealed that the OsBIANK1‐overexpressing plants display increased resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 as compared with the wild‐type plants. In OsBIANK1‐overexpressing plants, expression of some of well‐known defence genes (e.g. PR1, PR2 and PDF1.2) was up‐regulated after infection with B. cinerea or P. syringae pv. tomato DC3000. Furthermore, the OsBIANK1‐overexpressing plants showed decreased levels of reactive oxygen species (i.e. superoxide anion and H2O2) after Botrytis infection. Thus, our present results further support the role of OsBIANK1 in regulation of defence responses against different types of pathogens.  相似文献   

20.
A sandy culture experiment was conducted to investigate the effects of exogenous CaCl2 on the indole alkaloid accumulation in Catharanthus roseus under salt stress. One-month seedlings of C. roseus were treated with the different concentrations of NaCl (0, 50, and 100 mmol l? 1) and 7.5 mmol l? 1 CaCl2. The plant samples were analyzed after 7 days of the treatments. The NaCl-stressed plants showed decrease of fresh and dry weight and increase of malondialdehyde (MDA) content compared to control. Tryptophan decarboxylase (TDC) activity increased significantly under 50 mmol l? 1 NaCl without CaCl2 addition, 50 mmol l? 1 NaCl with 7.5 mmol l? 1 CaCl2, and CaCl2 treatment without NaCl addition. There was a significant increase in peroxidase activity under NaCl stress compared to control. The vindoline, catharanthine, vincristine, and vinblastine contents increased under salt stress (especially with 50 mmol l? 1 NaCl treatment with or without CaCl2). Addition of CaCl2 to NaCl-stressed plants increased biomass, TDC activity, vindoline, and catharanthine contents and lowered MDA and vincirstine contents compared to the plants without CaCl2. The plants treated with CaCl2 alone showed higher TDC activity, vindoline, catharanthine, and vinblastine content when compared to control. The results showed that exogenous CaCl2 could promote the indole alkaloid metabolism under salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号