首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Fifteen isolates of Bacillus, isolated from the root-knot nematode suppressive soils, were used for the biocontrol of Meloidogyne incognita on tomato. Bacillus isolates B1, B4, B5 and B11 caused greater inhibitory effect on hatching of M. incognita than caused by other isolates. In addition, these isolates (B1, B4, B5 and B11) caused greater colonisation of tomato roots and also caused greater increase in the growth of tomato seedling than caused by other isolates. All the isolates of Bacillus were able to increase growth of tomato and caused reduction in galling and nematode multiplication in green house tests. Isolates B1, B4, B5 and B11 caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication than other isolates in a green house test. These isolates were also tested for hydrogen cyanide (HCN) and indole acetic acid productions. Only one isolate (B13) produced HCN out of 15 tested. On the other hand, isolates B5, B11, B4 and B1 showed greater production of IAA than the other 11 isolates tested. This study suggests that Bacillus isolates B5, B11, B4 and B1 may be used for the biocontrol of M. incognita on tomato.  相似文献   

2.
Effect of interactions of Meloidogyne incognita with Ralstonia solanacearum and interaction of M. incognita with Pectobacterium carotovorum were studied in sequential and simultaneous inoculations on potato (Solanum tuberosum). Inoculation of M. incognita caused a lesser reduction in plant growth than caused by R. solanacearum. Inoculation of M. incognita plus R. solanacearum caused a greater reduction in plant growth than the damage caused by either pathogen. Inoculation of M. incognita prior to R. solanacearum resulted in a greater reduction in plant growth than R. solanacearum was inoculated prior to M. incognita. However, inoculation of M. incognita or P. carotovorum caused similar reduction in plant growth. Inoculation of P. carotovorum prior to M. incognita caused lesser reduction in plant growth than simultaneous inoculation of both pathogens. Inoculation of M. incognita caused galling in potato roots but the size of galls was small. Inoculation of P. carotovorum or R. solanacearum with M. incognita had adverse effect on galling and nematode multiplication. Wilting or soft rot index was 3 when R. solanacearum or P. carotovorum was inoculated alone. In other treatments, where R. solanacearum or P. carotovorum was inoculated with M. incognita, wilting or soft rot indices were 5.  相似文献   

3.
Biocontrol of wilt disease complex of pea caused by the root-knot nematode Meloidogyne incognita and Fusarium oxysporum f. sp. pisi was studied on pea (Pisum sativum L.) using plant growth-promoting rhizobacterium Pseudomonas fluorescens and root nodule bacterium Rhizobium sp. Inoculation of M. incognita and F.oxysporum alone caused significant reductions in plant growth over un-inoculated control. Reduction in plant growth caused by M. incognita was statistically equal to that caused by F. oxysporum. Inoculation of M. incognita plus F. oxysporum together caused a greater reduction in plant growth than the sum of damage caused by these pathogens singly. Inoculation of P. fluorescens and Rhizobium sp. individually or both together increased plant growth in pathogen inoculated and un-inoculated plants. Inoculation of P. fluorescens to pathogen-inoculated plants caused a greater increase in plant growth than caused by Rhizobium sp. Application of Rhizobium plus P. fluorescens caused a greater increase in plant growth than caused by each of them singly. Inoculation of P.fluorescens caused higher reduction in galling and nematode multiplication than caused by Rhizobium sp. Use of Rhizobium plus P. fluorescens caused higher reduction in galling and nematode multiplication than their individual inoculation. Plants inoculated with both pathogens plus Rhizobium showed less nodulation than plants inoculated with single pathogen plus Rhizobium. Inoculation of Rhizobium plus P. fluorescens resulted in higher root-nodulation than inoculated only with Rhizobium. Wilting indices were 4 and 5, respectively, when plants were inoculated with F. oxysporum and F. oxysporum plus M. incognita. Wilting indices were reduced maximum to 1 and 2, respectively, when plants inoculated with F.oxysporum and plants with both pathogens were treated with P. fluorescens plus Rhizobium.  相似文献   

4.
An increase in the inoculum level of root‐knot nematode, Meloidogyne incognita and the reniform nematode, Rotylenchulus reniformis resulted in a relative decrease in plant growth parameters of chickpea. Consequently water absorption capability of roots was impaired. M. incognita caused greater reduction than R. reniformis at the same inoculum level. In concomitant inoculation of M. incognita and R. reniformis there was greater suppression in plant growth of chickpea. The suppression in concomitant inoculations was less than the sum of the suppression caused by the same levels of inoculations of the individual species. The multiplication rate of the nematodes decreased as the inoculum level increased. The results also suggest competition for feeding sites between the two nematode species. The multiplication rate of one species progressively decrease with the increase in the inoculum levels of the other nematode.  相似文献   

5.
Studies were made to determine the efficacy of Paecilomyces lilacinus in management of root-knot nematode (Meloidogyne incognita) in soil amended with various organic matters. The soil amendments with organic additives except gram and rice husks significantly reduced the multiplication of M. incognita and the root galling caused by root-knot nematode which consequently increased the plant growth. The greatest improvement in plant growth and reduced reproduction factor and root galling was recorded in soil amendment with leaves of Calotropis procera while the least was in kail saw dust. The best protection against M. incognita was observed on the integration of organic additives with P. lilacinus, which resulted increased plant growth and reduced population build-up of nematodes and root gallings. The leaves of C. procera with P. lilacinus were most effective than all other organic materials used among the different integrated approaches. The organic amendments also increased the parasitism of P. lilacinus on M. incognita.  相似文献   

6.
A pot experiment was conducted on tomato (Solanum lycopersicum cv. Pusa Ruby) to assess the effect of different phosphorus (P) levels (0, 125, 250 and 500 mg/pot) and the plant growth promoting rhizobacterium, Pseudomonas fluorescens, on the growth of tomato and on the reproduction of Meloidogyne incognita. Maximum growth of tomato occurred at P rates of 125 mg/kg soil, irrespective of whether plants were uninoculated or inoculated with P. fluorescens or M. incognita or inoculated with both the agents. Nematodes per gram of roots, egg masses per root, eggs per egg mass and galls per root significantly increased by increasing levels of P. P. fluorescens performed better than other treatments and different P levels in improving tomato growth and reducing galling and multiplication of M. incognita.  相似文献   

7.
Effects of plant growth promoting rhizobacteria (Pseudomonas putida MTCC No. 3604 and Pseudomonas alcaligenes MTCC No. 493) and parasitic fungi (Pochonia chlamydosporia KIA and Paecilomyces lilacinus KIA) were studied, alone and together with Rhizobium sp. (charcoal commercial culture) on the growth of chickpea and multiplication of Meloidogyne javanica. Individually, P. putida 3604, P. alcaligenes 493 and Rhizobium caused a significant increase in the growth of chickpea in both nematode inoculated and uninoculated plants. Inoculation of Rhizobium with a parasitic fungus or with plant growth promoting rhizobaterium caused a greater increase in the growth of plants inoculated with nematodes than caused by either of them singly. Individually, P. lilacinus KIA caused a greater increase in the growth of nematode inoculated plants than caused by P. putida 3604 or P. alcaligenes 493. P. lilacinus KIA caused a greater reduction in galling and nematode multiplication followed by P. chlamydosporia KIA, P. putida 3604 and P. alcaligenes 493. Combined use of P. lilacinus KIA with Rhizobium was better in reducing galling and nematode multiplication than any other treatment. P. putida 3604 caused a greater colonization of root than P. alcaligenes 493 while P. lilacinus KIA was isolated from more nematodes than P. chlamydosporia KIA.  相似文献   

8.
The role of some Iranian strains of Pseudomonas spp. as biocontrol agents against Meloidogyne incognita and their ability to colonise pistachio roots was investigated. The results of in vitro experiments indicated that all tested bacteria produced significant suppression of M. incognita and showed that all strains were able to kill M. incognita juveniles with strain VUPf428 achieving about 99% mortality at 72 h. The results of in vivo treatments indicated that the best strains that could build high populations in soil infested with nematodes were VUPf5, VUPf52 and VUPf205. These isolates also caused highest reduction in galling and nematode multiplication in a greenhouse test although all strains native to Iran could colonise pistachio roots in pots. Some strains could produce secondary metabolites such as siderophores, proteases and volatile metabolites at high population levels.  相似文献   

9.
Seaweed concentrate (SWC), prepared fromEcklonia maxima, when applied as a soil drench to tomato seedlings, significantly increased plant growth and reduced infestation byMeloidogyne incognita. Foliar applied SWC had little effect on plant growth and increased nematode galling. Ashing SWC reduced the suppressive effect on nematode infestation. In anin vitro experiment, SWC lessened infestation of root-knot nematodes on excised roots of a susceptible cultivar of tomato. Application of the same concentrations of SWC to a nematode-resistant cultivar increased the number of egg masses.  相似文献   

10.
The effects of mycorrhisation and inoculation with soil bacteria on the disease caused by Meloidogyne incognita on tomato were studied in pots under greenhouse conditions. Efficacy in promoting plant growth and reducing disease severity and final nematode densities were evaluated for two arbuscular mycorrhizal fungi (AMF; Funneliformis mosseae and Rhizophagus irregularis), three soil bacteria with different living strategies (the endophyte Bacillus megaterium, a rhizospheric Pseudomonas putida and the hyperparasite of nematodes Pasteuria penetrans) and combinations of the fungi and bacteria. In M. incognita-infested plants, F. mosseae increased tomato growth more than R. irregularis, and plants inoculated with B. megaterium presented higher shoot fresh weight than with P. putida or P. penetrans, but dual inoculation did not improve tomato growth more than single inoculations. Disease severity and final nematode densities were reduced by F. mosseae compared to non-mycorrhizal plants. B. megaterium and P. penetrans reduced both the root galling and the final nematode densities compared to treatments without bacteria. P. penetrans reduced final nematode densities more than B. megaterium or P. putida. Dual inoculation of AMF and P. penetrans showed the highest efficacy in reducing the final nematode densities in tomato.  相似文献   

11.
Glasshouse experiments were conducted to assess the influence of Pseudomonas fluorescens, Azotobacter chroococcum, Azospirillum brasilense and composted organic fertilizers (cow dung, horse dung, goat dung and poultry manure) alone and in combination on the multiplication of Meloidogyne incognita and growth of tomato. P. fluorescens was better at improving tomato growth and reducing galling and nematode multiplication than A. chroococcum or A. brasilense. Among composted organic fertilizers, poultry manure resulted in less galling and nematode multiplication than occurred with goat dung. However, composted goat dung was better in reducing nematode multiplication and improving plant growth than horse dung. Cow dung was the composted organic fertilizer least effective in reducing galling and nematode multiplication. Poultry manure with P. fluorescens was the best combination for the management of M. incognita on tomato but improved management of M. incognita can also be obtained if goat dung is used with P. fluorescens or poultry manure with A. chroococcum.  相似文献   

12.

Leaf extracts of noxious weeds such as Solanum xanthocarpum and Argemone maxicana were used as bare-root dip treatment for the management of three important plant-parasitic nematodes, Meloidogyne incognita, Rotylenchulus reniformis and Tylenchorhynchus brassicae infesting tomato (Lycopersicon esculantum ) and chilli (Capsicum annuum) plants. Significant reduction was observed in the root-knot development caused by M. incognita, multiplication of nematode populations of R. reniformis and T. brassicae on both the test plants. Larval penetration of second stage juveniles of M. incognita was also inhibited at various concentrations of leaf extracts and dip durations. Leaf extract of S. xanthocarpum caused relatively more inhibition in root-knot development in case of root-knot nematode, nematode multiplication of reniform and stunt nematodes than that of A. maxicana. Because of dip treatment in leaf extracts of Argemone maxicana and Solanum xanthocarpum, the plants show better growth and at the same time the populations of nematodes such as M. incognita, R. reniformis and T. brassicae significantly decreased, which naturally improved plant growth. The efficacy of root-dip treatment with respect to improvement in plant weight and reduction in root-knot development and nematode populations, increased with increasing the concentration of leaf extracts and dip durations.  相似文献   

13.
Biocontrol of the root-knot nematode Meloidogyne javanica was studied on lentil using plant growth-promoting rhizobacteria (PGPR) namely Pseudomonas putida, P. alcaligenes, Paenibacillus polymyxa and Bacillus pumilus and root nodule bacterium Rhizobium sp. Pseudomonas putida caused greater inhibitory effect on the hatching and penetration of M. javanica followed by P. alcaligenes, P. polymyxa and B. pumilus. Inoculation of any PGPR species alone or together with Rhizobium increased plant growth both in M. javanica-inoculated and -uninoculated plants. Inoculation of Rhizobum caused greater increase in plant growth than caused by any species of plant growth-promoting rhizobacteria in nematode-inoculated plants. Among PGPR, P. putida caused greater increase in plant growth and higher reduction in galling and nematode multiplication followed by P. alcaligenes, P. polymyxa and B. pumilus. Combined use of Rhizobium with any species of PGPR caused higher reduction in galling and nematode multiplication than their individual inoculation. Use of Rhizobium plus P. putida caused maximum reduction in galling and nematode multiplication followed by Rhizobium plus P. alcaligens. Pseudomonas putida caused greater root colonization and siderophore production followed by P. alcaligenes, P. polymyxa and B. pumilus. Analysis of the protein bands of these four species by SDS-PAGE revealed that P. putida had a different protein band profile compared to the protein profiles of P. alcaligenes, P. polymyxa and B. pumilus. However, the protein profiles of P. acaligenes, P. polymyxa and B. pumilus were similar.  相似文献   

14.
The effects of combinations of organic amendments, phytochemicals, and plant-growth promoting rhizobacteria on tomato (Lycopersicon esculentum) germination, transplant growth, and infectivity of Meloidogyne incognita were evaluated. Two phytochemicals (citral and benzaldehyde), three organic amendments (pine bark, chitin, and hemicellulose), and three bacteria (Serratia marcescens, Brevibacterium iodinum, and Pseudomonas fluorescens) were assessed. Increasing rates of benzaldehyde and citral reduced nematode egg viability in vitro. Benzaldehyde was 100% efficacious as a nematicide against juveniles, whereas citral reduced juvenile viability to less than 20% at all rates tested. Benzaldehyde increased tomato seed germination and root weight, whereas citral decreased both. High rates of pine bark or chitin reduced plant growth but not seed germination, whereas low rates of chitin increased shoot length, shoot weight, and root weight; improved root condition; and reduced galling. The combination of chitin and benzaldehyde significantly improved tomato transplant growth and reduced galling. While each of the bacterial isolates contributed to increased plant growth in combination treatments, only Brevibacterium iodinum applied alone significantly improved plant growth.  相似文献   

15.
Plant growth-promoting rhizobacterium, Pseudomonas fluorescens strain BICC602 suppresses root-knot nematode (Meloidogyne incognita) by enhancing defence mechanism leading to induced systemic resistance in cowpea (Vigna unguiculata) cv. L.Walp. and tomato (Solanum lycopersicum) cv. Pusa Ruby. In cowpea, the soil treatment proved more effective than foliar spray on root galling and eggs in roots. However, which factors are necessary in the induction of resistance response in plants against nematodes by BICC602 is not yet known. Salicylic acid (SA) production by some bacteria acts as endogenous signal for the activation of certain plant defence responses. In a split-root trial with tomato as a host plant and M. incognita as challenging parasite, BICC602 induces systemic resistance in tomato plants. Based on the results, it is assumed that P. fluorescens-induced resistance against M. incognita in cowpea and tomato is made either through SA-dependent or SA-independent transduction pathway.  相似文献   

16.
The effectiveness of soil fumigation with 50, 100 and 200 µL kg?1 soil of essential oils (EOs) from the plant species Eucalyptus citriodora, Eucalyptus globulus, Mentha piperita, Pelargonium asperum and Ruta graveolens was assessed against the root‐knot nematode Meloidogyne incognita on potted tomato. Plant growth parameters and number of galls, nematode eggs and juveniles on tomato roots were evaluated after two months of maintenance of the treated plants at 25°C in greenhouse. EOs of E. globulus and P. asperum significantly reduced nematode multiplication and gall formation on tomato roots at all the tested rates, whereas the EOs of E. citriodora, M. piperita and R. graveolens were more suppressive at levels greater than 50 µL kg?1 soil. Biofumigation with EOs of E. globulus and P. asperum resulted also in the largest increase of tomato plant top and root biomass. The five samples of EOs had a different chemical composition as determined by GC and GC‐MS. Structure–activity relationship based on the main constituents of the tested EOs and their nematicidal effect on M. incognita is discussed.  相似文献   

17.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

18.
Culture filtrates of selected soil fungi, namely Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium oxysporum, Penicillium vermiculatum and Rhizopus nigricans exhibited variable response to egg hatching and mortality of the root-knot nematode, Meloidogyne incognita. Higher concentrations of the culture filtrates of all the fungi inhibited egg hatching and proved to be toxic to the juveniles of M. incognita. In addition, development of the gall and multiplication of M. incognita were also found adversely affected in varying degrees on all the plants of Vigna radiata treated with the filtrates. The culture filtrate of A. niger showed highest toxicity to the nematode than those of any other fungus tested. Soil drench application of the culture filtrates gave better seedling growth and least nematode multiplication in comparison to seed soaking treatment.  相似文献   

19.
Abstract

Six species AM fungi, namely Glomus fasciculatum, G. constrictum, G. intraradices sp., Gigaspora margarita, Acaulospora sp. and Sclerocystis sp., were used for the biological control of root-rot disease complex of chickpea caused by Meloidogyne incognita and Macrophomina phaseolina. Application of these AM fungi increase plant growth, pod number, chlorophyll, nitrogen, phosphorus and potassium contents in diseased plants and also reduced nematode multiplication and root-rot index. G. fasciculatum caused greater increase in plant growth, pod number, chlorophyll, nitrogen, phosphorus and potassium contents of pathogen inoculated plants followed by G. intaradices, G. constrictum, Sclerocystis, G. margarita and Acaulospora sp. Percent root colonization caused by G. fasciculatum was high followed by G. intaradices, G. constrictum, Sclerocystis sp., G. margarita and Acaulospora sp. Glomus fasciculatum also caused higher reduction in root-rot index, galling and nematodes multiplication while Acaulospora sp. produced the least.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号